Learning and Model Checking Real-world TCP Implementations

Paul Fiterău-Broștean Ramon Janssen

Automata learning

- Black box
- Infer a model automatically

Automata learning

- Black box
- Infer a model automatically
- Learner sends inputs, observes outputs

Automata learning

- Black box
- Infer a model automatically
- Learner sends inputs, observes outputs

We have a model... Now what?

Model checking

- Automated proof
- Flexible: compose models into networks

Model checking

- Automated proof
- Flexible: compose models into networks

Problems:

- Models are often unavailable or incomplete
- Is the model consistent with the system (sut)?

Why combine them?

Learning found bugs already:

• E-Readers: security flaw

• TCP-implementation: non-conformance to standard

Model checking helps:

• Automatic instead of manual analysis

Composition into networks

Part 1: Active learning of TCP

Apply learning to TCP implementations:

- TCP is a network protocol
- A client connects to a server
- TCP is reliable, messages are ordered and acknowledged

Machine 1

Machine 2

Inputs:

- network packets
 - flags
 - sequence number
 - acknowledgement number

Inputs:

- network packets
 - flags
 - sequence number
 - acknowledgement number
- system calls:
 - listen, accept, close (server only)
 - connect, close (client only)

Inputs:

- network packets
 - flags
 - sequence number
 - acknowledgement number
- system calls:
 - listen, accept, close (server only)
 - connect, close (client only)

Outputs:

network packets

Inputs:

- network packets
 - flags
 - sequence number
 - acknowledgement number
- system calls:
 - listen, accept, close (server only)
 - connect, close (client only)

Outputs:

network packets

(This is a restricted scope)

TCP packets have parameters

- Each packet behaves differently, depending on these values
- Number of unique inputs explodes

This makes the input alphabet too large to learn a model of TCP

Solution: abstraction

 Map large set of concrete parameters to small set of abstract parameters

Solution: abstraction

 Map large set of concrete parameters to small set of abstract parameters

Solution: abstraction

 Map large set of concrete parameters to small set of abstract parameters

Map input numbers to {valid, invalid}

Solution: abstraction

 Map large set of concrete parameters to small set of abstract parameters

Map input numbers to {valid, invalid}
Map output numbers to {zero, fresh, current, next}

Learner

virtual machine

host

TCP

SUT

Learning example

Resulting models

Server:

Client:

Part 2: Model checking of TCP

Model checking: results

Specification: only valid inputs should be sent.

Some invalid inputs were found:

- 1. Model incorrect
- 2. Implementation incorrect

Model checking: results

- 1. Model incorrect
- Cases which result in invalid inputs are re-tested
- The sut and model may behave differently
- This case is included in the learning for an improved model

Model checking: results

- 2. Implementation incorrect
- No actual bugs were found
- The tested part of TCP is shown to interact correctly

Concluding model checking learned models

- Combining the techniques works well
- We can utilize the advantages of both:
 - Testing of real system with learning
 - Composition in model checking
 - Quick and easy analysis with model checker
- Proof: only valid inputs are sent, with learned parts of TCP

To do:

- Mapping to abstract values automatically
- Define and check new properties
- Extend model: data transfer, timing...

