

Model-Based Testing

Product Lines of

Cyber-Physical Systems

Mohammad Mousavi

Halmstad University

Product Lines

• Common core

• Variability points

– Various models of

variability

– Huge challenges in

analysis

Cyber-Physical Systems

• Communication

(often: asynchronous)

• Computation

(often: distributed)

• Interaction with the

physical world

(incl. sensors, actuators,

 human beings)

Product Lines of

Cyber-Physical Systems

Product Lines: Incremental

• Neat structure

• Limited variability

• Reasonable analysis

possibilities

Core

Product

[Kästner, Apel, Kuhlemann.

Granularity in Software Product Lines, ICSE 2008]

[Simao and Petrenko,

Fault Coverage-Driven Incremental Test Generation,

The Computer J., 2010]

Product Lines: Annotational

• Less clear structure

• More expressive:
(space and time
variability)

• Difficulties with
analyzing deletion
and modifications

[Varshosaz, Beohar, MRM,
Delta-Oriented FSM-Based Testing, ICFEM
2015]

[Schaefer et al. Delta-Oriented Prog., SPLS

2010]

[Apel et al. Strategies for product-line

verification:

Case studies and experiments]

Product Lines: Compositional

• Clear structure

• Very expressive

• Difficult to

implement and

analyze

Figure 2: Features in DeltaJ
Figure 2: Features in DeltaJ
Figure 2: Features in DeltaJ

[Beohar and MRM, Spinal Test-Suited for

Software Product Lines, MBT 2014]

Model-Based Testing

• Abstractions from reality

• Separating different concerns

• Approximating system behavior

and / or its environment

8

– Restricting environment interactions

– Simpler than actual system

– Easier to verify

rcv_pos_req?

snd_core_req! snd_pos_resp!

rcv_core_req? time_out?

snd_core_req! snd_pos_resp!

rcv_core_req? time_out?

rcv_pos_req?

9

Model-Based Testing

rcv_pos_req!

snd_core_req?

Test Case

snd_pos_resp?

fail pass

Testing

Ecosystem

c b

a

Model

Test-Case

Generator
(UPPAAL Yggdrasil,

SpecExplorer,

RT-Tester,

QuickCheck

Sikuli)

a 0

1

a b c

idle

Next

Impl. Under Test

A
d

a
p

to
r

Test Result:

pass or fail

(+ counterexample)

Coverage

Metrics

Offline

Test

Traceability

Info.

Test DB

10

Model-Based Testing (Behind the

Scene)

MBT for Product-Lines: Product-

Based
• Build a few representative products and

test them

• Common practice in industry

• No clue about / hope for coverage

12

Very Unreliable for Cyber-Physical System:

Taking an autonomous vehicle can take ages…

MBT for Product-Lines: Feature-

Based
• Take features and cover them

(e.g., individually, pairwise, or T-wise)

– Very difficult to analyze individual features

(complex feature interactions)

13

MBT for Product-Lines: Family-

Based
• Use the structure of family to steer test

execution

– Extrapolation problem: Are test results from

product 1 also valid for a large set of

products?

– Test-generation modularisation: How to test

the difference between product 1 and product

2?

Difficult problems to solve…

14

[Dimovski, Brabrand, and Wąsowski. Variability Abstractions. ECOOP 2015]

MBT for Product-Lines: Family-

Based
Extrapolation problem:

15

Core

Product

Variant n

Core

Product

c b

a

Core Test Suite

Pass ✔

Pass

?

MBT for Product-Lines: Family-

Based
Extrapolation problem: Proposed approach

16

Core

Product

Variant n

Core

Product

Differential Program Analysis

[Lahiri et al. Automated Differential Program Verification for Approximate Computing]

MBT for Product-Lines: Family-

Based
Test-Suite Modularisation:

17

Core

Product

Variant n

Core

Product

c b

a

Family Test Suite c b

a

Core Test Suite

Differential Program Analysis

Pass ✔

c b

a

Delta Test Suite

Model and Projection

18

Features ={c,cc,cac,…}

?off/cc

?on/cc

!rgl/cc

Valid product {c,cc,…}

?normal/cac

?detobs/cac

!emrgl/cac

Valid product {c,cc,cac,…}

For a more serious model of cruise control, see:

M.A. de Langen, Vehicle Function Correctness, Masters Thesis, TU/e, 2012.

Test Suite

19

?off/cc

?on/cc

!rgl/cc

?normal/cac

?detobs/cac

!emrgl/cac

θ
fail

?rgl
?emrgrgl θ

 !on

!off
fail

?emrgl θ θ

!rgl

fail
!off ?emrgl θ θ

!detobs

?rgl θ
fail

?emrgl

!normal

Test Suites: Projection

 !on

!off

θ

 !rgl

fail

fail

fail

?rgl

!off

20

 θ

 θ

?off/cc

?on/cc

!rgl/cc

Test Suites: Residual Testing

21

?off/cc

?on/cc

!rgl/cc

?normal/cac

?detobs/cac

!emrgl/cac

 !on

!rgl

!detobs

fail

fail

fail

?emrgrgl

?emrgl θ

?emrgl θ

?rgl θ
fail

?emrgl

 !normal

Feature Interaction

?off/cc

?on/cc

!rgl/cc

?normal/cac

?detobs/cac

!emrgl/cac

?normal/cac

?detobs/cac

!rgl/cac

?on/cc

!rgl/cc

?off/cc

MBT for Cyber-Physical

Systems

23

Challenges:
• Modeling system

dynamics

(differential equations,

accuracy of numerics)

• Sampling inputs and

outputs, approximate

conformance

(in time and value)

• Coverage

MBT for Cyber-Physical

Systems

24

[Aerts, Reniers, MRM.

Tool Prototype for Model-Based Testing of

Cyber-Physical Systems, ICTAC 2015]

• Focus: Automotive Open System Architecture

• Goal: Trace concrete failures of automotive software

to

deviations from AUTOSAR standard

• Means:

 Model-Based Testing technology from Halmstad

University

 Formalization of AUTOSAR protocol stacks from

QuviQ and

 open source implementation of AUTOSAR from

ArcCore

• 3 years project (2015-2018),

AUTO-CAAS: Automated Consequence

Analysis for Automotive Software

• Goal: Efficient Testing of Software Product Lines

 “Testing a product line should take far less effort

 than testing each and every individual product.”

 “To test a product line efficiently and effectively,

 we find few representative products that

 provide maximal feature covering.”

• Means: Model-Based Testing (based on state machine specifications)

• Application areas: healthcare and automotive software

• 6 years project (2013-2019)

MBT4SPL: Model-Based Testing for

Software Product Lines

• Goal: Compositional testing of concurrent software

“Integrating symbolic execution with model-based testing”

“Building data-rich test models by combining requirements and gray-box

structural information”

• 5 years project (2015-2019),

• Funded by the Swedish Research Council (VR)

EFFEMBAC: Efficient Model-Based

Testing of Concurrent Software

Product Lines of

Cyber-Physical Systems

6th Halmstad Summer School on

Testing
http://ceres.hh.se/HSST_2016

30

Dino Distefano

FaceBook and

Queen Mary U.

Alastair Donaldson

Imperial College
Jeff Offutt

George Mason U.

Alexandre Petrenko

Comp. Sys. Research Inst.
Per Runesson

Lund U.
Marielle Stoelinga

U. Twente

Thank You!

Mohammad Mousavi

m.r.mousavi@hh.se

31

