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Product Lines 

• Common core 

• Variability points 

– Various models of 

variability 

– Huge challenges in 

analysis 



Cyber-Physical Systems 

• Communication  

(often: asynchronous) 

• Computation  

(often: distributed) 

• Interaction with the  

physical world  

(incl. sensors, actuators,  

  human beings) 



Product Lines of  

Cyber-Physical Systems 



Product Lines: Incremental 

• Neat structure 

 

• Limited variability 

 

• Reasonable analysis 

possibilities 
 

 

 

 

Core  

Product 

[Kästner, Apel, Kuhlemann.  

Granularity in Software Product Lines, ICSE 2008] 

[Simao and Petrenko,  

Fault Coverage-Driven Incremental Test Generation,  

The Computer J., 2010] 



Product Lines: Annotational 

• Less clear structure 

• More expressive: 
(space and time 
variability) 

• Difficulties with  
analyzing deletion  
and modifications 

 

 
 

[Varshosaz, Beohar, MRM, 
Delta-Oriented FSM-Based Testing, ICFEM 
2015] 

 

[Schaefer et al. Delta-Oriented Prog., SPLS 

2010] 

[Apel et al. Strategies for product-line 

verification:  

Case studies and experiments] 



Product Lines: Compositional 

• Clear structure 

• Very expressive  

• Difficult to  

implement and  

analyze 

 

 

 

Figure 2: Features in DeltaJ 
Figure 2: Features in DeltaJ 
Figure 2: Features in DeltaJ 

[Beohar and MRM, Spinal Test-Suited for  

Software Product Lines, MBT 2014] 



Model-Based Testing 

• Abstractions from reality 

• Separating different concerns 

• Approximating system behavior  

and / or its environment 
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– Restricting environment interactions 

– Simpler than actual system 

– Easier to verify 



rcv_pos_req? 

snd_core_req! snd_pos_resp! 

rcv_core_req? time_out? 

snd_core_req! snd_pos_resp! 

rcv_core_req? time_out? 

rcv_pos_req? 
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Model-Based Testing 

 
rcv_pos_req! 

snd_core_req? 

Test Case 

snd_pos_resp? 

fail pass 



 

Testing 
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c b 

a 

Model 

Test-Case 

Generator 
(UPPAAL Yggdrasil, 

SpecExplorer, 

RT-Tester, 

QuickCheck 

Sikuli) 
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1 
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idle 

Next 

Impl. Under Test 
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d
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r 

Test Result: 

pass or fail  
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Coverage 
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Test 
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Test DB 
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Model-Based Testing (Behind the 

Scene) 



MBT for Product-Lines: Product-

Based 
• Build a few representative products and 

test them 

• Common practice in industry 

• No clue about / hope for coverage  
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Very Unreliable for Cyber-Physical System:  

Taking an autonomous vehicle can take ages… 



MBT for Product-Lines: Feature-

Based 
• Take features and cover them  

(e.g., individually, pairwise, or T-wise)  

– Very difficult to analyze individual features 

(complex feature interactions)  
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MBT for Product-Lines: Family-

Based 
• Use the structure of family to steer test 

execution 

– Extrapolation problem: Are test results from 

product 1 also valid for a large set of 

products? 

– Test-generation modularisation: How to test 

the difference between product 1 and product 

2? 

 

Difficult problems to solve… 
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[Dimovski, Brabrand, and Wąsowski. Variability Abstractions. ECOOP 2015] 



MBT for Product-Lines: Family-

Based 
Extrapolation problem: 
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Core  

Product 

Variant n 

Core  

Product 

c b 

a 

Core Test Suite 

Pass ✔ 

Pass 

?  



MBT for Product-Lines: Family-

Based 
Extrapolation problem: Proposed approach 
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Core  

Product 

Variant n 

Core  

Product 

Differential Program Analysis 

[Lahiri et al. Automated Differential Program Verification for Approximate Computing] 



MBT for Product-Lines: Family-

Based 
Test-Suite Modularisation: 
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Core  

Product 

Variant n 

Core  

Product 

c b 

a 

Family Test Suite c b 

a 

Core Test Suite 

Differential Program Analysis 

Pass ✔ 

c b 

a 

Delta Test Suite 



Model and Projection 
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Features ={c,cc,cac,…} 

?off/cc 

?on/cc 

!rgl/cc 

Valid product {c,cc,…} 

?normal/cac 

?detobs/cac 

!emrgl/cac 

Valid product {c,cc,cac,…} 

For a more serious model of cruise control, see: 

M.A. de Langen, Vehicle Function Correctness, Masters Thesis, TU/e, 2012. 



Test Suite 
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?off/cc 

?on/cc 

!rgl/cc 

?normal/cac 

?detobs/cac 

!emrgl/cac 

θ 
fail 

?rgl 
?emrgrgl θ 

 !on 

!off 
fail 

?emrgl θ θ 

!rgl 

fail 
!off ?emrgl θ θ 

!detobs 

?rgl θ  
fail 

?emrgl 

!normal 



Test Suites: Projection 

 !on 

!off 

θ 

 !rgl 

fail 

fail 

fail 

?rgl 

!off 
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 θ 

    θ 

?off/cc 

?on/cc 

!rgl/cc 



Test Suites: Residual Testing 
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?off/cc 

?on/cc 

!rgl/cc 

?normal/cac 

?detobs/cac 

!emrgl/cac 

 !on 

!rgl 

!detobs 

fail 

fail 

fail 

?emrgrgl 

?emrgl θ  

?emrgl θ 

?rgl θ  
fail 

?emrgl 

 !normal 



Feature Interaction 

?off/cc 

?on/cc 

!rgl/cc 

?normal/cac 

?detobs/cac 

!emrgl/cac 

?normal/cac 

?detobs/cac 

!rgl/cac 

?on/cc 

!rgl/cc 

?off/cc 



MBT for Cyber-Physical 

Systems 
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Challenges: 
• Modeling system 

dynamics  

(differential equations,  

accuracy of numerics) 

• Sampling inputs and 

outputs, approximate 

conformance  

(in time and value)  

• Coverage 
 

 

 

 

 

 

 



MBT for Cyber-Physical 

Systems 
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[Aerts, Reniers, MRM.  

Tool Prototype for Model-Based Testing of  

Cyber-Physical Systems, ICTAC 2015] 



• Focus: Automotive Open System Architecture 

• Goal: Trace concrete failures of automotive software 

to  

deviations from AUTOSAR standard  

 

• Means:  

        Model-Based Testing technology from Halmstad 

University 

        Formalization of AUTOSAR protocol stacks from 

QuviQ and  

        open source implementation of AUTOSAR from 

ArcCore  

 

• 3 years project (2015-2018),  

AUTO-CAAS: Automated Consequence 

Analysis for Automotive Software 



• Goal: Efficient Testing of Software Product Lines 

 

      “Testing a product line should take far less effort  

      than testing each and every individual product.” 

 

      “To test a product line efficiently and effectively,  

      we find few representative products that  

       provide maximal feature covering.” 

 

 

 

 

• Means: Model-Based Testing (based on state machine specifications)  

• Application areas: healthcare and automotive software  

• 6 years project (2013-2019) 

MBT4SPL: Model-Based Testing for  

Software Product Lines 



• Goal: Compositional testing of concurrent software 

 

“Integrating symbolic execution with model-based testing” 

 

“Building data-rich test models by combining requirements and gray-box 

structural information” 

 

 

• 5 years project (2015-2019),  

• Funded by the Swedish Research Council (VR) 

EFFEMBAC: Efficient Model-Based 

Testing of Concurrent Software 



Product Lines of  

Cyber-Physical Systems 



6th Halmstad Summer School on 

Testing 
http://ceres.hh.se/HSST_2016 
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