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Contributions
Completely learn industrial software


Novel FSM-based conformance testing method
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Why models?
• Testing (new) implementations, 

i.e. conformance testing


• Testing properties of the system, 
i.e. model checking


• Derive implementations automatically, 
i.e. code generation  
 

...
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Reality
We don't have models, only black boxes...
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Goal: Automatically learn a model



Active learning in theory
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System

Behaviour query

Behaviour

Equivalence query
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L: what happens when I 
perform 'abc'? 

T: Then we observe 'xyz'



Active learning in theory
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Learner Teacher 

System

Behaviour query

Behaviour

Equivalence query

correct OR counterexample

L: Is                  correct? 

T: No, 'baba' is wrong



Active learning in theory
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Learner Teacher 

System

But: Who is the teacher?

Behaviour query

Behaviour

Equivalence query

correct OR counterexample



Active learning in practice
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Learner 

Model based 
testing tool

Behaviour query

Behaviour

Equivalence query

correct OR counterexample

L: Is                  correct? 

T: Could not find ce in time

Tests



Active learning in practice
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Learner 

Model based 
testing tool

Learner is implemented by LearnLib

Behaviour query

Behaviour

Equivalence query

correct OR counterexample

Tests



Our system
Printer software from Océ
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Our system
Printer software from Océ
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3410 states 
77 actions



The problem we ran into
Given a hypothesis: 
 
How do we find a counter example as fast as 
possible? 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The problem we ran into
Given a hypothesis: 
 
How do we find a counter example as fast as 
possible? 

• Random walk? 

• W-method?
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The W-method (and variants)
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The W-method (and variants)
Prefix:

9

bring the system to a specific state 
(shortest path in hypothesis)

Middle: to discover extra states 
(exhaustive search)

Suffix: test specific behaviour of a state 
(derived from hypothesis)

P · A≤k · W



Two problems with P · A≤k · W
Recall that |A| = 77, so A≤k will be big.
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Two problems with P · A≤k · W
Recall that |A| = 77, so A≤k will be big.
• Instead of A≤k, randomly sample A*. 

The set W is big with a lot of short words
• We adopted an algorithm by Lee and 

Yannakakis. This generates less, but longer 
suffixes.
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Results
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Results
Still not able to learn! 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Results
Still not able to learn! 

Solution: Manually select sub 
alphabet for thorough testing
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Final results
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Conclusions
• We indeed can learn big black box systems 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• Applying Automata Learning to Embedded Control Software 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Conclusions
• We indeed can learn big black box systems 

• With no (significant) use of expert knowledge 
 
 

• Applying Automata Learning to Embedded Control Software 
Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N., ICFEM 2015

• Lessons learned in the analysis of the EMV and TLS security protocols 
J. de Ruijter, PhD thesis, 2015
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See talk on learning 
TCP for abstractions 
and model checking!



Thank you!
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