
Heisenbug hunting

from the trenches

Andrei Terechko

andrei@vectorfabrics.com

http://www.vectorfabrics.com

mailto:martijn@vectorfabrics.com

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 2 | October 6th, 2015

Outline

• Is my software free of bugs?

• Dynamic analysis to the rescue

• Case studies:
1. TCP/IP software stack

2. H.264 reference software

3. Visualization Toolkit

4. Boost C++

5. Car navigation software

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 3 | October 6th, 2015

Wake-up call

Thread 1

repeat 20:

 sum++;

t1 = 1;

Thread 2

repeat 20:

 sum++

t2 = 1;

Thread 0

t1 = t2 = sum = 0;

spawn Thread 1;

spawn Thread 2;

while !t1 && !t2;

print sum;

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 4 | October 6th, 2015

Heisenbugs and other dynamic bugs

• Wikipedia on Heisenbug:

a software bug

that seems to disappear

or alter its behavior

when one attempts to study it

• hard to catch in development

• crash systems in production

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 5 | October 6th, 2015

Static and dynamic bugs

src1.c

src2.c

src1.c

src2.c

static bugs,

“spell checker”

dynamic bugs,

“behavior checker”

!

!

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 6 | October 6th, 2015

How to detect the dynamic bugs?

Compiler

(gcc, clang)

standards checker

(MISRA, QA-C)

Unit testing frameworks

(CPPUnit)

Static analysis

(Coverity, Klocwork)

Dynamic analysis

(Pareon Verify)

Static,

single thread

Dynamic,

multithreading

Quality certification

(SIL, ISO)

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 7 | October 6th, 2015

Dynamic analysis @ Continuous Integration

Source

code

Compile Execute Output Executable

Static

analysis
Dynamic

analysis
Error

report

Error

report

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 8 | October 6th, 2015

Top quality of the tested projects

• Agile development techniques

• Deploy Continuous Integration

• Excellent set of unit tests

• Many integration tests

• Some have conformance tests

• Use code coverage to add new tests

• Use static analysis tools

• Eager to adopt dynamic analysis tools

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 9 | October 6th, 2015

TCP/IP stack for Internet-of-Things

https://github.com/tass-belgium/picotcp

https://github.com/tass-belgium/picotcp
https://github.com/tass-belgium/picotcp
https://github.com/tass-belgium/picotcp
https://github.com/tass-belgium/picotcp

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 10 | October 6th, 2015

TCP/IP stack on GitHub

...

...

• Global variable moved

to stack

• Pointer to stack variable

passed to a callback

function

• Pointer dereferenced

after stack deallocation

...

https://github.com/tass-belgium/picotcp/commit/fea3349751fb5dc473539852ba880a7e762b7cfc

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 11 | October 6th, 2015

Use after deallocation

[M0212] Use after deallocation detected:

 the write in

 function bar at dealloc.c:8

 called from function main at dealloc.c:12

 ^^^ application start ^^^

 follows after an earlier deallocation in

 function foo called from

 function main at dealloc.c:11

 ^^^ application start ^^^

 where the object was originally created through

 the stack object of size 4 allocated as `x' in

 function foo at dealloc.c:3

 called from function main at dealloc.c:11

 ^^^ application start ^^^

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 12 | October 6th, 2015

TCP/IP bug fixes on GitHub

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 13 | October 6th, 2015

H.264 reference software

• H.264 - video coding standard

• Golden reference implementation

• Mature open-source project

• 117K lines of C

• http://iphome.hhi.de/suehring/tml

http://iphome.hhi.de/suehring/tml
http://iphome.hhi.de/suehring/tml

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 14 | October 6th, 2015

H.264 reference software

• Multi-dimensional array
– accessed inside (and outside of) its boundaries

– with a wrong index

– getting wrong data via a pointer

– from a valid data element

• Test case succeeds!

value 22, in macro mapped to 2nd index

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 15 | October 6th, 2015

Array bound violation

[M0443] Array bound violation(s) detected:

 the read in

 function biari_init_context at ldecod/src/biaridecod.c:299

 called from function init_contexts at ldecod/src/context_ini.c:114

 called from function decode_one_frame at ldecod/src/image.c:943

 called from function DecodeOneFrame at ldecod/src/ldecod.c:1254

 called from function main at ldecod/src/decoder_test.c:245

 performed 420 access of size 1 between the offsets of 240 and 658 bytes in

 the static object of size 720 `INIT_FLD_MAP_P' from ctx_tables.h:895

 where array index 21 is outside of array `INIT_FLD_MAP_P[][0..7][][]' in

 function init_contexts at ldecod/src/context_ini.c:114

 called from function decode_one_frame at ldecod/src/image.c:943

 called from function DecodeOneFrame at ldecod/src/ldecod.c:1254

 called from function main at ldecod/src/decoder_test.c:245

• Exact specification of the faulty index in the array

• Bug fixed two days after the submission

• https://ipbt.hhi.fraunhofer.de/mantis/view.php?id=348

https://ipbt.hhi.fraunhofer.de/mantis/view.php?id=348
https://ipbt.hhi.fraunhofer.de/mantis/view.php?id=348

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 16 | October 6th, 2015

Visualization ToolKit

• VTK – Visualization ToolKit

• Mature open-source project

• 1.5M lines of C++

• 800K lines of C

• http://www.vtk.org

http://www.vtk.org/
http://www.vtk.org/

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 17 | October 6th, 2015

Visualization ToolKit

• Pointers and casts, C++ templates and classes

• But the code looks OK and...

• Test succeeds

T is not char!

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 18 | October 6th, 2015

Read from uninitialized stack object

[M0203] Read(s) from uninitialized stack object detected:

 the read in

 function vtkByteSwapper<2ul>::Swap at vtkByteSwap.cxx:43

 called from function vtkByteSwapRange<short> at vtkByteSwap.cxx:75

 called from function vtkByteSwapBERange<short> at vtkByteSwap.cxx:193

 called from function vtkByteSwap::SwapBERange at vtkByteSwap.cxx:240

 called from function vtkByteSwap::Swap2BERange at vtkByteSwap.cxx:298

 called from function TestByteSwap at otherByteSwap.cxx:57

 called from function otherByteSwap at otherByteSwap.cxx:160

 called from function main at vtkCommonCoreCxxTests.cxx:372

 performed 1 access of size 1 at an offset of 8 bytes from the start of

 the stack object of size 1024 allocated as `cword' in

 function TestByteSwap at otherByteSwap.cxx:32

 called from function otherByteSwap at otherByteSwap.cxx:160

 called from function main at vtkCommonCoreCxxTests.cxx:372

• Easy patch based on the clear error message

• Bug reported in 6.1.0 and fixed in 6.2.0

• http://www.vtk.org/Bug/view.php?id=14997

http://www.vtk.org/Bug/view.php?id=14997
http://www.vtk.org/Bug/view.php?id=14997

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 19 | October 6th, 2015

Boost C++ libraries

• Boost C++

• High-quality 80 libraries

• Peer-reviewed

• Highly portable

• 25M lines of C++

• http://www.boost.org

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 20 | October 6th, 2015

Boost C++ libraries

• Magic value determines if a struct is initialized or not

• Attacker can exploit this bug to cause a denial of service

• Test succeeds

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 21 | October 6th, 2015

Read from uninitialized stack object

 [M0203] Read(s) from uninitialized stack object detected:

 the read in function regcompW at wide_posix_api.cpp:81

 called from function main at wide_posix_api_check.cpp:44

 called from function main_thread

 performed 1 access(es) of size 4 at the start of

 the stack object of size 40 allocated as `re' in

 function main at wide_posix_api_check.cpp:42

 called from function main_thread and

 the resulting value is used in evaluating the condition in

 function regcompW at wide_posix_api.cpp:81

 called from function main at wide_posix_api_check.cpp:44

 called from function main_thread

• Fixed

• https://svn.boost.org/trac/boost/ticket/11472

https://svn.boost.org/trac/boost/ticket/11472
https://svn.boost.org/trac/boost/ticket/11472
https://svn.boost.org/trac/boost/ticket/11472

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 22 | October 6th, 2015

Navigation software

Features:

• Map display in 2D

• Route planning

• Route guidance

• Speech instructions

High quality code:

• Open source: peer reviewed

• Code quality confirmed by Coverity

http://sourceforge.net/projects/navit/

http://sourceforge.net/projects/navit/
http://sourceforge.net/projects/navit/

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 23 | October 6th, 2015

Execution on target, analysis on host

Serial port

USB “ethernet” Yocto Linux “Dizzy”

Ubuntu 14.04

sends data to PC

Target runs instrumented Navit
Host does analysis

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 24 | October 6th, 2015

Pareon is a good companion

We (lzm) filed a bug: http://trac.navit-project.org/ticket/1316

NAVIT developer (KaZeR) on IRC #navit; Aug 26 2015:

 Bug was fixed day after reporting

< KaZeR> lzm: thanks for that bug report!

< KaZeR> we are also using Coverity for this kind of analysis

< KaZeR> interesting.. I can't find this one in our Coverity's report

<lzm> probably because Coverity does static analysis on the

source code, while Pareon Verify does dynamic analysis on a

running program on the target platform (x86/arm/android)

< KaZeR> which makes it a really good companion

http://trac.navit-project.org/ticket/1316
http://trac.navit-project.org/ticket/1316
http://trac.navit-project.org/ticket/1316

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 25 | October 6th, 2015

Memory leak

[M0181] Memory leak detected:

 the heap object of size 4 allocated through a call to `g_malloc0_n' in

 function callback_list_new at /data/lessandro/navit/navit/callback.c:43

 called from function route_new at /data/lessandro/navit/navit/route.c:487

 ...

 called from function main_thread

 has become unreachable.

 This object was last accessible from:

 the heap object of size 96 allocated through a call to `g_malloc0_n' in

 function route_new at /data/lessandro/navit/navit/route.c:476

 called from function start_element at /data/lessandro/navit/navit/xmlconfig.c:674

 ...

at offset 60 which was deallocated in function g_free in

 function route_destroy at /data/lessandro/navit/navit/route.c:4075

 called from function navit_destroy at /data/lessandro/navit/navit/navit.c:3521

 ...

This object was last accessed by:

 the write in

 function callback_list_add at /data/lessandro/navit/navit/callback.c:113

 called from function route_add_attr at /data/lessandro/navit/navit/route.c:3949

 called from function navigation_set_route at /data/lessandro/navit/navit/navigation.c:4354

 ...

 called from function main_thread

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 26 | October 6th, 2015

Memory leak

struct route *

route_new(struct attr *parent, struct attr **attrs)

{

 ...

 this->cbl2=callback_list_new();

 ...

}

void

route_destroy(struct route *this_)

{

 this_->refcount++; /* avoid recursion */

 route_path_destroy(this_->path2,1);

 route_graph_destroy(this_->graph);

 route_clear_destinations(this_);

 route_info_free(this_->pos);

 map_destroy(this_->map);

 map_destroy(this_->graph_map);

 g_free(this_);

}

Allocated here

Reference lost here

Should have called: callback_list_destroy(this_->cbl2)

>

© 2015 VECTOR FABRICS. ALL RIGHTS RESERVED. 27 | October 6th, 2015

Take-away

1. Your reputation is at risk if you think your code is bug-free

2. Static error is an easy catch, dynamic bugs slip through

3. Dynamic analysis = “really good companion” in debugging

Find critical bugs and
optimize your software
with Pareon

http://vectorfabrics.com

Andrei Terechko

andrei@vectorfabrics.com

Zaltbommel, The Netherlands

http://vectorfabrics.com/
mailto:martijn@vectorfabrics.com

