
Detecting Heisenbugs
the case for dynamic program analysis

Andrei Terechko

Andrei Terechko

andrei@vectorfabrics.com

+31 40 8200960

Eindhoven, The Netherlands

mailto:martijn@vectorfabrics.com

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 2 | November 17, 2014

Outline

1. Software bugs that cost billions

2. Dynamic analysis tools to find them

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 3 | November 17, 2014

Anything wrong here?

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 4 | November 17, 2014

Heisenbugs are critical

• Wikipedia on Heisenbug:

a software bug

that seems to disappear

or alter its behavior

when one attempts to study it

• hard to catch in development

• crash systems in production

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 5 | November 17, 2014

Google Chrome: 8.3 million lines of code

Joint Strike Fighter: 24+ million lines of code

Radio & navigation in Mercedes S-class: 20 million lines of code

How about Heisenbugs in real-life?

Heartbleed OpenSSL bug

Costs $1B+

Due to an

uninitialized memory read

Toyota Prius recall

of 8M cars

Costs: $2B

due to a data race

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 6 | November 17, 2014

Multi-threading – rise of the Heisenbugs

Quiz: without further synchronization, which are valid print-outs according

to C (and Java) semantics?

a) 1 1

b) 1 2

c) 2 1

d) 2 2

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 7 | November 17, 2014

Program analysis tools to the rescue

Source

code
Compile Execute Output Executable

Static

analysis

Dynamic

analysis
Error

report

Error

report

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 8 | November 17, 2014

What about static analysis tools?

“The team's experience is that there is no

single analysis technique today that

can reliably intercept all vulnerabilities,

but that it is strongly recommended to

deploy a range of different leading tools.

Each tool used can excel at a different

aspect of static analysis, which results in

remarkably little overlap in the set of

warnings that is produced.”

– NASA assessment report on Toyota’s

unintended acceleration failure
www.nhtsa.gov/staticfiles/nvs/pdf/NASA_FR_Appendix_A_Software.pdf

http://www.nhtsa.gov/staticfiles/nvs/pdf/NASA_FR_Appendix_A_Software.pdf

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 9 | November 17, 2014

Statically analyzable?

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 10 | November 17, 2014

Vector Fabrics’ activities

Multicore

programming tools

based on dynamic

analysis

Consultancy

services

Training

in-house and on-

site

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 11 | November 17, 2014

Dynamic analysis – opportunities

• Many true positives
– Analyze code that is inherently dynamic: dynamic loop bounds, (C++) function

pointers, virtual functions, recursion, etc.

• Analyze code with full-program scope
– Find many more true positives: across functions, files, (shared) libraries

– False negatives when code paths are not executed

• Find errors in code that is timing-dependent
– Data races from interrupts, threads, signals – even if these do not occur in the test!

– Potential deadlocks

• Capture code coverage & hotspot profiles

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 12 | November 17, 2014

Dynamic analysis – sales challenge

• Just one day to prove you can find critical bugs in customer code

• Challenges in install, build, execute
– No longer supported operating system and tools

– Highly custom build system not known by the customer

– Customer does not know all the required libraries

– Illegal code constructs accepted by just one specific compiler

– Highly custom target platform with custom compiler extensions

– Custom way to get trace out of the target platform (RS-232, JTAG, ??)

• Challenges in interpreting the results
– Even belt-stop bugs are regarded as a “false positive”

10:00

Install

tool

Build the

instrumented

code

Execute &

capture the

trace

Investigate

false vs. true

positives

Report to

management

12:30 16:00

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 13 | November 17, 2014

Dynamic analysis – technology challenge

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 14 | November 17, 2014

Simple messages, easy to understand?

int *a;

int main(void)

{

 int b[2], i;

 for (i=0; i<=2; ++i)

 b[i] = i+1;

 a = malloc(4*sizeof(short));

 a[b[2]] = b[b[0]-2];

 return 0;

}

==6043==ERROR: AddressSanitizer: stack-buffer-overflow

on address 0x7fff135ca5a8 at pc 0x42d59b bp

0x7fff135ca4b0 sp 0x7fff135ca4a8

WRITE of size 4 at 0x7fff135ca5a8 thread T0

 #0 0x42d59a

(/home1/stefan/vf/code/demo/b.out+0x42d59a)

 #1 0x7f65a84ce76c (/lib/x86_64-linux-gnu/libc-

2.15.so+0x2176c)

 #2 0x42d25c

(/home1/stefan/vf/code/demo/b.out+0x42d25c)

Address 0x7fff135ca5a8 is located in stack of thread

T0 at offset 104 in frame

 #0 0x42d32f

(/home1/stefan/vf/code/demo/b.out+0x42d32f)

 This frame has 3 object(s):

 [32, 36) ''

 [96, 104) 'b'

 [160, 164) 'i'

HINT: this may be a false positive if your program

uses some custom stack unwind mechanism or swapcontext

 (longjmp and C++ exceptions *are* supported)

Shadow bytes around the buggy address:

 0x1000626b1460: 00 00 00 00 00 00 00 00 00 00 00 00

 0x1000626b1470: 00 00 00 00 00 00 00 00 00 00 00 00

 0x1000626b1480: 00 00 00 00 00 00 00 00 00 00 00 00

 0x1000626b1490: 00 00 00 00 00 00 00 00 00 00 00 00

 0x1000626b14a0: 00 00 00 00 00 00 00 00 f1 f1 f1 f1

=>0x1000626b14b0: f2 f2 f2 f2 00[f4]f4 f4 f2 f2 f2 f2

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 15 | November 17, 2014

Tool development
R

e
a

l-
lif

e
 e

n
v
ir
o

n
m

e
n

t

Errors found w/o false positives

• Embedded targets

• Huge C/C++

code bases

• Memory leaks

• Real-world code

• Predictive data races

& taint analysis

• Zero false positives

• Small Java examples

• Memory leaks

• Small Java examples

• Predictive data races

& taint analysis

• Zero false negatives?

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 16 | November 17, 2014

Take-away

• Software complexity grows to huge systems nobody can oversee

• Multicore will cause more recalls, power outages, and heartbleed

• Dynamic analysis is key to find errors in these dynamic systems

Dynamic analysis for C/C++

requires extensive “plumbing”

to work on real-life code

and needs innovation in scalable,

pragmatic tooling to detect

real-life errors

Optimize your software
and find critical bugs

http://vectorfabrics.com

Andrei Terechko

andrei@vectorfabrics.com

+31 40 8200960

Eindhoven, The Netherlands

http://vectorfabrics.com/
mailto:martijn@vectorfabrics.com

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 18 | November 17, 2014

Chromium – real-life build system

Roughly 8.3 million lines of C++ and another 3.8Mlines of C
(the 285k lines of Java pale in comparison)

106 git repositories, 7 subversion repositories

Over 11,000 C/C++ files to compile

6 build targets (Windows, Linux, MacOSX, ChromeOS, Android, iOS)

Custom software configuration mechanism (“gyp”)

77 configuration files spread across the entire tree

Non-standard build tool (“ninja”)

33 C++ compilers shipped as part of the project (20 for Android alone)

52 C compilers (37 for various Android configurations)

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 19 | November 17, 2014

Heartbleed – typical dynamic problem

Uninitialized memory read in OpenSSL:

 p = s->s3->rrec.data[0]

• to identify exactly to which object p is pointing,

• to see how the data flowed through the application

to that object

Understand data originally came from a tainted source

The industry “solution” – admit defeat and apply a heuristic:

“We noticed that the tainted data was being converted via n2s, a macro that performs

byte swapping. […] This heuristic bypasses the complex control-flow and data-flow path

that reaches this point in the program, and instead infers and tracks tainted data near

the point where it is used.”
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html

http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 20 | November 17, 2014

1300 pages just for C++?

Provides good insight in C++ concurrency

C++11 standardizes concurrency primitives

Warns for many many subtle problems

The authorative description

(4th edition)

Apparently requires

1300+ pages...

Safe concurrency by defensive design

Shows that Java shares many concurrency

issues with C++

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 21 | November 17, 2014

No silver bullet

“A wide range of commercial static source-

code-analysis tools is on the market, each

with slightly different strengths. We

found that running multiple analyzers over

the same code can be very effective; there

is surprisingly little overlap in the output

from the various tools. This observation

prompted us to run not just one but four

different analyzers over all code as part of

the nightly integration builds for the MSL

mission.”

Gerard J. Holzmann: Mars code. Commun. ACM 57(2):64–73 (2014)

http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm57.html

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 22 | November 17, 2014

Trivial program?

Global int x = 0, y = 0;

Launch four threads, namely:

• Thread 1: x = 1;

• Thread 2: y = 1;

• Thread 3:

 if (x && !y) print(“X first”);

• Thread 4:

 if (y && !x) print(“Y first”);

Can this program execute both prints?

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 23 | November 17, 2014

Multicore – Moore’s law vs. Amdahl’s law

What chip vendors are promising

(Compute capacity)

What users are getting

(Achieved performance)

Time

P
e
rf

o
rm

a
n
c
e

Introduction of

multicore

technology

Existing software is

not making use of the full

potential of multi-core hardware

“The way the processor industry is going, is to

add more and more cores, but nobody

knows how to program those things. I mean,

two yeah; four not really; eight, forget it.”

Steve Jobs, Apple

“Most mortal humans cannot

visualize parallelism. It can only be

solved by creating better tools to

assist programmers”

Patrick Moorhead

US #1 most cited tech analyst

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 24 | November 17, 2014

Mobile web browsers – browsermark

How can a dual-core iPhone outperform

a quad-core Samsung S5?!

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 25 | November 17, 2014

Anything wrong here?

const string& pass(const string& s)

{

 return s;

}

int main()

{

 const string& s = pass("foo");

 return s == "bar";

}

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 26 | November 17, 2014

The world goes multicore!

Galaxy S (2010)

single core

1 processor

Galaxy S2 (2011)

dual-core

2 processors

Galaxy S3 (2012)

quad-core

4 processors

Galaxy S4 (2013)

octa-core

8 processors

Intel processor with 61 processors

for servers

Cisco manycore (336 processors)

for software-defined networking

© 2014 VECTOR FABRICS. ALL RIGHTS RESERVED. 27 | November 17, 2014

Creating parallel programs is hard

Edward A. Lee, EECS professor at U.C. Berkeley:

“Although threads seem to be a small step from
sequential computation, in fact, they represent a huge
step. They discard the most essential and appealing
properties of sequential computation: understandability,
predictability, and determinism.”

Herb Sutter, ISO C++ standards committee,
Microsoft:

“Everybody who learns concurrency thinks
they understand it, ends up finding
mysterious races they thought weren’t
possible, and discovers that they didn’t
actually understand it yet after all”

