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Where innovation starts



LaQuSo, SynerScope

- Laboratory for Quality Software
— Part of TU/e department of Mathematics and Computer Science
— Valorization of academic knowledge for use
. . . LaQuSo
N bUSIneSS and IndUStry Laboratory for Quality Software
— Feeding academia with questions from industry

* SynerScope
— Spin-off from TU/e’s Visualization group with

the creators of TraceVis SYNerscope
- Invented the edge bundling techniques e

— Discovery of patterns in Big Data

— Successful application in financial transactions for detecting fraud
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Difficult questions

- Software development is carried out under pressure
- “Time to Market” vs. “Costs” vs. “Quality”.

* Questions arise such as:
— Have we tested enough?
— How many test do we have to redo for the new version?

* These are difficult questions to answer, but:
— Every requirement should be tested with an acceptance test

— ldeally, requirements are as thoroughly tested as their
perceived risk

How to go about questions like this?
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Traceability

- The usual answer is “traceability”
Reql Reg2 Req3 Req4 Req5 Reg6 Req7 Req8
Testl X X
Test2 X
Test3 X X
Test4 X
Testd X X
Test6 X

Test7 X X

* The “traceability matrix” above shows the traceability
between requirements and test cases
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Traceability

« Unfortunately, if we want full traceability across
multiple software artifacts, things are more complex

Business Acceptance
Requirements tests

—> Design _
\ Integratlon
Use cases
\1 tests

L Software Implementation |—> _ |
: Unit tests
Requirements
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Traceability

* There are different kinds of traceability relations:
1. Direct relations between software artifacts
e.g. components (from design) vs. code units

2. Direct relations between units of a software artifact
e.g. business requirements vs. software requirements

3. Indirect (transitive) relations between software
artifacts

e.g. business requirements vs. acceptance tests

- To investigate the last category, we need to look at
“traceability chains”
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Traceability

« To investigate indirect relations using traceability
matrices, we usually end up with:

— Multiple artifact elements in a big matrix (1-to-n relations)
— Matrices spread over multiple artifacts

N = —
\$ >
BN

- “Seeing things” and changing things in either of these
setups can be challenging

« The effect of a change is difficult to assess
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Traceability with TraceVis

- In 2011, Wiljan van Ravensteijn started TraceVis as
part of his Masters Project at the TU/e

- The goal was to create a visual analytics tool to:
— Visualize traceability relations with hierarchies
— Allow interactive manipulation of the view
— Show the co-evolution of traceability across artifacts
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TraceVis
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TraceVis - Overview
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TraceVis - Patterns
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Short Demo
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Conclusions

- With TraceVis, we can:
— Interactively visualize traceabillity relations at different levels

— Spot anomalies such as outliers, empty spaces, inactivity,
etc. without knowing in advance what they look like

— Browse through the timeline and see how things evolve

* We can get insight into:
— Coverage (or the lack thereof) between artifacts
— Distribution of traceability relations between artifacts
— The co-evolution of artifacts
— The completeness of traceability chains
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Future research

« Often, the traceability information is (partly) missing:

— Investigate to what extent we can reconstruct traceability
Information from artifacts

— Extract an architecture proposal from code
— Extract unit test vs. code traceability from code
« We want to optimally steer development / test effort:
— Investigate problems with traceability in practice
— Visualizing industrial datasets
— Extend TraceVis with additional analysis features
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Thank you!

Questions / Feedback / Ideas?
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