
Managing the co-evolution of

software artifacts

ir. J.M.A.M. Gabriels

dr. ir. D.H.R. Holten

ir. M.D. Klabbers

ir. W.J.P. van Ravensteijn

dr. A. Serebrenik

LaQuSo, SynerScope

/ Department of Mathematics and Computer Science 21-11-2011

• Laboratory for Quality Software

− Part of TU/e department of Mathematics and Computer Science

− Valorization of academic knowledge for use

 in business and industry

− Feeding academia with questions from industry

• SynerScope

− Spin-off from TU/e’s Visualization group with

 the creators of TraceVis

− Invented the edge bundling techniques

− Discovery of patterns in Big Data

− Successful application in financial transactions for detecting fraud

Difficult questions

• Software development is carried out under pressure

− “Time to Market” vs. “Costs” vs. “Quality”.

• Questions arise such as:

− Have we tested enough?

− How many test do we have to redo for the new version?

• These are difficult questions to answer, but:

− Every requirement should be tested with an acceptance test

− Ideally, requirements are as thoroughly tested as their

perceived risk

How to go about questions like this?

/ Department of Mathematics and Computer Science 21-11-2011

Traceability

• The usual answer is “traceability”

• The “traceability matrix” above shows the traceability

between requirements and test cases

 / Department of Mathematics and Computer Science 21-11-2011

Req1 Req2 Req3 Req4 Req5 Req6 Req7 Req8

Test1 x x

Test2 x

Test3 x x

Test4 x

Test5 x x

Test6 x

Test7 x x

Traceability

• Unfortunately, if we want full traceability across

multiple software artifacts, things are more complex

/ Department of Mathematics and Computer Science 21-11-2011

Use cases

Software

Requirements

Business

Requirements

Implementation

Design

Unit tests

Integration

tests

Acceptance

tests

Traceability

• There are different kinds of traceability relations:

1. Direct relations between software artifacts

 e.g. components (from design) vs. code units

2. Direct relations between units of a software artifact

 e.g. business requirements vs. software requirements

3. Indirect (transitive) relations between software

artifacts

 e.g. business requirements vs. acceptance tests

• To investigate the last category, we need to look at

“traceability chains”

/ Department of Mathematics and Computer Science 21-11-2011

Traceability

• To investigate indirect relations using traceability

matrices, we usually end up with:

− Multiple artifact elements in a big matrix (1-to-n relations)

− Matrices spread over multiple artifacts

• “Seeing things” and changing things in either of these

setups can be challenging

• The effect of a change is difficult to assess

/ Department of Mathematics and Computer Science 21-11-2011

Traceability with TraceVis

• In 2011, Wiljan van Ravensteijn started TraceVis as

part of his Masters Project at the TU/e

• The goal was to create a visual analytics tool to:

− Visualize traceability relations with hierarchies

− Allow interactive manipulation of the view

− Show the co-evolution of traceability across artifacts

/ Department of Mathematics and Computer Science 21-11-2011

TraceVis

/ Department of Mathematics and Computer Science 21-11-2011

TraceVis - Overview

/ Department of Mathematics and Computer Science 21-11-2011

Timeline Sliders

Edge-bundled

traceability relations

Hierarchies

Selected relations

(follows through)

Color coded

priorities

TraceVis - Patterns

/ Department of Mathematics and Computer Science 21-11-2011

Elements

not covered

Outliers

Inactivity

Short Demo

/ Department of Mathematics and Computer Science 21-11-2011

Conclusions

• With TraceVis, we can:

− Interactively visualize traceability relations at different levels

− Spot anomalies such as outliers, empty spaces, inactivity,

etc. without knowing in advance what they look like

− Browse through the timeline and see how things evolve

• We can get insight into:

− Coverage (or the lack thereof) between artifacts

− Distribution of traceability relations between artifacts

− The co-evolution of artifacts

− The completeness of traceability chains

/ Department of Mathematics and Computer Science 21-11-2011

Future research

• Often, the traceability information is (partly) missing:

− Investigate to what extent we can reconstruct traceability

information from artifacts

− Extract an architecture proposal from code

− Extract unit test vs. code traceability from code

• We want to optimally steer development / test effort:

− Investigate problems with traceability in practice

− Visualizing industrial datasets

− Extend TraceVis with additional analysis features

/ Department of Mathematics and Computer Science 21-11-2011

Thank you!

Questions / Feedback / Ideas?

/ Department of Mathematics and Computer Science 21-11-2011

