Managing the co-evolution of
software artifacts

ir. J.M.A.M. Gabriels
dr.ir. D.H.R. Holten

ir. M.D. Klabbers

ir. W.J.P. van Ravensteijn
dr. A. Serebrenik

synerscope LaQuSo

Laboratory for Quality Software

TU/e

wne B T i
i} ;A
' -‘an»- -ﬁ
& ik .
el | | M A ‘!‘.' .'l
n-‘l 4 -~ ‘::'5‘1 L !
8| gk a0 T B ‘-ﬁ . !"'.
+ = g TEEESEE a4
id b i '.E ”i i v !;3_.! .gn

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

LaQuSo, SynerScope

- Laboratory for Quality Software
— Part of TU/e department of Mathematics and Computer Science
— Valorization of academic knowledge for use
. . . LaQuSo
N bUSIneSS and IndUStry Laboratory for Quality Software
— Feeding academia with questions from industry

* SynerScope
— Spin-off from TU/e’s Visualization group with

the creators of TraceVis SYNerscope
- Invented the edge bundling techniques e

— Discovery of patterns in Big Data

— Successful application in financial transactions for detecting fraud

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Difficult questions

- Software development is carried out under pressure
- “Time to Market” vs. “Costs” vs. “Quality”.

* Questions arise such as:
— Have we tested enough?
— How many test do we have to redo for the new version?

* These are difficult questions to answer, but:
— Every requirement should be tested with an acceptance test

— ldeally, requirements are as thoroughly tested as their
perceived risk

How to go about questions like this?
LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Traceability

- The usual answer is “traceability”
Reql Reg2 Req3 Req4 Req5 Reg6 Req7 Req8
Testl X X
Test2 X
Test3 X X
Test4 X
Testd X X
Test6 X

Test7 X X

* The “traceability matrix” above shows the traceability
between requirements and test cases

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Traceability

« Unfortunately, if we want full traceability across
multiple software artifacts, things are more complex

Business Acceptance
Requirements tests

—> Design _
\ Integratlon
Use cases
\1 tests

L Software Implementation |—> _ |
: Unit tests
Requirements

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Traceability

* There are different kinds of traceability relations:
1. Direct relations between software artifacts
e.g. components (from design) vs. code units

2. Direct relations between units of a software artifact
e.g. business requirements vs. software requirements

3. Indirect (transitive) relations between software
artifacts

e.g. business requirements vs. acceptance tests

- To investigate the last category, we need to look at
“traceability chains”

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Traceability

« To investigate indirect relations using traceability
matrices, we usually end up with:

— Multiple artifact elements in a big matrix (1-to-n relations)
— Matrices spread over multiple artifacts

N = —
\$ >
BN

- “Seeing things” and changing things in either of these
setups can be challenging

« The effect of a change is difficult to assess

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Traceability with TraceVis

- In 2011, Wiljan van Ravensteijn started TraceVis as
part of his Masters Project at the TU/e

- The goal was to create a visual analytics tool to:
— Visualize traceability relations with hierarchies
— Allow interactive manipulation of the view
— Show the co-evolution of traceability across artifacts

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

TraceVis

Q ReqVisInput_GiefPriority.xml

File Selection Stages Relatons Options View Help

] O. 9000 & 0000 9000 @ 0000

Test cese specificdions
S

sicosdfroghk M | ||| | Frg s 1!

<
Settings

Relatians

Bundling:

Spline width:

/ Department of Mathematics and Computer Science

Lo T]] 1 Euedl JEmpilFrea] 11 1 1]

SIS PO
suondusssp weuoduc)

/

I

i

51005y

& X Timeline & X

U 0 lIII]I\EIII\NIHHIIII\I]H i (AR

Made insertions Mode madifications Mode removals Relation insertians Relation remavals

Palette Timeline Information Log

LaQuSo TU /e G e

University of Technology

1 N [o ~ [
Laboratory for Quality Software

TraceVis - Overview

@, ReqVisinput_GiefPriority.xml H I e rarC h IeS =

File Selection Stages Relatons Options View Help

[To10

\

9000 @ 0000 @ O (¢

Selected relations
(follows through)

UCRS]

Edge-bundled
traceability relations

N\

s § neg JBunid;

suondusssp weuoduc)
aav

RO |

ATP
Test cese specificdions
EOO

SR PUsToU g

/

I

e | | | | | fees Peedpred) || |

Fenalhoid o gd TT T] T Eedl Jerodkod 11 1 111 |

___________ Color coded
priorities

Timeline

UL T

“NoN Jsuockl moud
a -i

1

Sliders

Settings
Felasens ||IIIIIIIIII\IIII\IH\HIIIIIIIHIIIIIIIIII||I|III-F|IIIII|HIIIIIIIIIIHIII\IIJIHIIIIIII]I\EIII\NIHHIIII\I]H |
Bundling: [T e T g e T Rl TR T 1R R
B
Spline width:
D Made insertions Mode madifications Mode removals Relation insertians Relation remavals

Palette Timeline Information Log

LG Q USO T U e E;mﬁ:: Universiteit
Lat

University of Technology

[- 1 C..L
porafrory ror /\QU‘LJ'!U\/ SQoftware

/ Department of Mathematics and Computer Science

TraceVis - Patterns

Q ReqVisInput_GiefPriority.xml = e X
File Selection Stages Relatons Options View Help

9000 ©

@
(]

9000 @ 0000

4 EoFod Il 1111 19
7).

suondusssp weuoduc)

Furctiora

yirernents i
11130 B0 B 2 W IF = =

Test cese specificdions
req

I

ooyl “roid

MaN

Settings

Rel
canens |IIIII|HIII|I|III|HIII\IIIIHIIIIIII]I\EIII\ I
n

E.Unc\llng: 1010 0 OO (1 [WO I

Spline width:
D Made insertions Mode madifications Mode removals Relation insertians Relation remavals

Palette Timeline Information Log
LG Q SO Technische Universiteit
e Eindhoven

University of Technology

i e ik Cafl o
L(,H)(}‘(H(JV}’ ror \FDU(J!*\/ S0ltware

/ Department of Mathematics and Computer Science

Short Demo

LaQuSo TU /e b e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Conclusions

- With TraceVis, we can:
— Interactively visualize traceabillity relations at different levels

— Spot anomalies such as outliers, empty spaces, inactivity,
etc. without knowing in advance what they look like

— Browse through the timeline and see how things evolve

* We can get insight into:
— Coverage (or the lack thereof) between artifacts
— Distribution of traceability relations between artifacts
— The co-evolution of artifacts
— The completeness of traceability chains

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Future research

« Often, the traceability information is (partly) missing:

— Investigate to what extent we can reconstruct traceability
Information from artifacts

— Extract an architecture proposal from code
— Extract unit test vs. code traceability from code
« We want to optimally steer development / test effort:
— Investigate problems with traceability in practice
— Visualizing industrial datasets
— Extend TraceVis with additional analysis features

LaQuSo TU /e s e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

Thank you!

Questions / Feedback / Ideas?

LaQuSo TU /e b e

University of Technology

Laboratory for Quality Software

/ Department of Mathematics and Computer Science

