
Managing the co-evolution of software artifacts

J.M.A.M. Gabriels1, D.H.R. Holten2, M.D. Klabbers1, W.J.P. van Ravensteijn2, A. Serebrenik1
1Laboratory for Quality Software, Eindhoven University of Technology, 2Synerscope B.V.

{j.m.a.m.gabriels, m.d.klabbers, a.serebrenik}@tue.nl, {danny.holten, wiljan.van.ravensteijn}@synerscope.com

Software development projects are virtually always carried out under pressure. Planning and budgets are tight,
room for errors is non-existent and the pressure to deliver is high. Natural questions for (test) managers arise,
such as: “When have we tested enough?” and “How many tests do we have to redo for this new version?”. The
naive answer would be: “when we have convinced ourselves through testing that all requirements are satisfied.”.
Unfortunately, attaining maximal confidence with minimal effort is not easy.

In order to convince ourselves that the system does what it is supposed to do, tests are required. Requirements,
design and code change during the development of software. As a consequence, tests need to change as well for in
the end we want to ensure that all requirements and risks are adequately addressed with tests. For this, tests at
different levels of abstraction and for different software artifacts are required and need to be managed.

To relate user requirements, design, code and tests, traceability matrices are often used. Traceability allows to
link elements from different software artifacts, like requirements, design components and code components, to each
other and to test cases. As a result, traceability can be used to analyze for example how well software artifacts are
covered by test cases. Because a requirement leads to design components and eventually to code, tests are needed at
each stage. Traceability can tell us how well test cases cover different software artifact elements. This information
can be used to uncover mistakes in software artifacts at an early stage and actively manage the development and
test efforts. Unfortunately, traceability information is often spread out over multiple artifacts and describes only
the current situation.

Figure 1: TraceVis tool with
traceability information from
a student capstone project at
the Eindhoven university of
Technology. The edge bundel-
ing technique makes it easy to
spot deviations. The gap la-
beled (1) shows some medium
and low priority user require-
ments not covered by accep-
tance tests. The gap labeled
(2), located in the timeline,
shows that test cases were
added very late in the project.
The gap itself relates to imple-
mentation activities in which
there were no changes to the
shown software artifacts.

TraceVis, a visual analytics tool based on the master thesis of Van Ravensteijn1, combines the traceability infor-
mation of multiple software artifacts in an interactive way. Furthermore it provides a way of assessing the evolution
of traceability between artifacts though a timeline. Figure 1 shows the traceability between four, vertically placed,
hierarchical software artifacts: acceptance test plan, user requirements document, software requirements document,
and architectural design document. Each line represents a link between elements of two artifacts. Priorities and/or
risks can be marked with colors and hierarchies can be collapsed and extended. Furthermore, the edge bundling
technique bundles similar relations in the middle, clearly showing deviations. Already at first glance, we can see
points of attention in Figure 1: a gap in requirement coverage and a gap in the timeline.

The evolutionary traceability information allows us to see how well tests cover artifacts and whether risks are
sufficiently tackled. It gives insight in the balance between tests, priorities, and risks and can support decision
making in assigning test effort. Furthermore, it can help in determining which tests need to be redone when a
certain component or requirement changes. The insight in the co-evolution of software artifacts and associated tests
makes it possible to actively manage test effort from an early stage on.

1W.J.P. van Ravensteijn, Visual traceability across dynamic ordered hierarchies, 2011, Eindhoven University of Technology


