
Black-Box Test Case Design Techniques
in the Automotive Industry

Dr. Joachim Wegener
joachim.wegener@berner-mattner.com

2

Overview

• Motivation

• Test Case Design Requirements

• Classification-Tree Method

• Model-based Testing

• Time-Partition Testing

• Evolutionary Testing

• Conclusion

3

Challenges in Automotive System Development

1990 1998 2005

W140
W220

W221

Year

C
od

es
iz

e
(M

B)

100

200

300

400

500

600

Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas

4

Challenges in Automotive System Development
Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas Software as differentiating

factor for competitive advantage
Software as differentiating
factor for competitive advantage

P
R
E
-
S
a
f
e

E
S
P

D
i
s
t
r
o
n
i
c

5

Challenges in Automotive System Development
Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas

Increasing
complexity of
systems

Increasing
complexity of
systems

50-70 communicating embedded controllers with
• different micro-controllers and
• different operating systems (OSEK, QNX, …)
• several bus systems (CAN-B, CAN-C, MOST, Flexray, …) with different

topologies for exchange of more than 2000 signals and messages
• strong interactions

• development and production by a large number of different suppliers
• electrical and optical cabling (length ~2.5 km)
• up to 150 electronic motors
• more than 10,000,000 lines of software code

Software as differentiating
factor for competitive advantage
Software as differentiating
factor for competitive advantage

6

Challenges in Automotive System Development

Increasing
complexity of
systems

Increasing
complexity of
systems

Increasing
significance of
software in safety
relevant areas

Increasing
significance of
software in safety
relevant areas

Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas Software as differentiating

factor for competitive advantage
Software as differentiating
factor for competitive advantage

7

Challenges in Automotive System Development

Safety regulations and
environmental laws
ISO 9000, 26262

SPICE
OSEK, MOST, AutoSAR

MISRA, …

Increasing
complexity of
systems

Increasing
complexity of
systems

Increasing signific-
ance of software in
safety relevant areas

Increasing signific-
ance of software in
safety relevant areas

Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas

High requirements for software
based systems due to norms,
standards and legal regulations

High requirements for software
based systems due to norms,
standards and legal regulations

Software as differentiating
factor for competitive advantage
Software as differentiating
factor for competitive advantage

8

Challenges in Automotive System Development

Increasing
complexity of
systems

Increasing
complexity of
systems

Increasing signific-
ance of software in
safety relevant areas

Increasing signific-
ance of software in
safety relevant areas

Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas Software as differentiating

factor for competitive advantage
Software as differentiating
factor for competitive advantage

Large number
of variants

Large number
of variants

High requirements for software
based systems due to norms,
standards and legal regulations

High requirements for software
based systems due to norms,
standards and legal regulations

9

Challenges in Automotive System Development

High consequential
costs due to faults

High consequential
costs due to faults

Increasing
complexity of
systems

Increasing
complexity of
systems

Increasing signific-
ance of software in
safety relevant areas

Increasing signific-
ance of software in
safety relevant areas

Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas

High economic risks
due to call-back or
product liability cases

Software as differentiating
factor for competitive advantage
Software as differentiating
factor for competitive advantage

Large number
of variants

Large number
of variants

High requirements for software
based systems due to norms,
standards and legal regulations

High requirements for software
based systems due to norms,
standards and legal regulations

10

Challenges in Automotive System Development

Cost-effective
development
and time-to-
market
crucial for
competitiveness

Cost-effective
development
and time-to-
market
crucial for
competitiveness

Increasing
complexity of
systems

Increasing
complexity of
systems

Increasing
significance of
software in safety
relevant areas

Increasing
significance of
software in safety
relevant areas

Increasing amount of software
in products in almost all areas

Increasing amount of software
in products in almost all areas Software as differentiating

factor for competitive advantage
Software as differentiating
factor for competitive advantage

High consequential
costs due to faults

High consequential
costs due to faults

Large number
of variants

Large number
of variants

High requirements for software
based systems due to norms,
standards and legal regulations

High requirements for software
based systems due to norms,
standards and legal regulations

11

Challenges in Automotive System Development

Demonstration of current systems

12

System Specification

Component Development

Implementation Unit Test

Integration

Integration Test

Vehicle Test

Production Test

Vehicle Integration

System Test
System Design

Model Test

System Development

13

System Specification

Implementation Unit Test

Integration

Integration Test

Vehicle Test

Production Test

Vehicle Integration

System Test
System Design

Model Test

System Development

Component Development

OEM

14

System Specification

Implementation Unit Test

Integration

Integration Test

System Design

Vehicle Test

Production Test

Vehicle Integration

System Test

OEM

Supplier

Model Test

Predominat System Development

Component Development

15

System Specification

Implementation Unit Test

Integration

Integration Test

System Design

Vehicle Test

Production Test

Vehicle Integration

System Test

OEM

Supplier

Model Test

Predominat System Development

CQM, CQASPICE-Assessments

Component Development

System Test

Review

16

System Specification

Component
Development

Implementation Unit Test

Integration

Integration Test

System Design

Vehicle Test

Production Test

Vehicle Integration

System Test

Supplier

Model Test

• Testing is the most important analytical quality assurance measure
• Testing is a very significant cost factor
• Pure Black-Box testing

• no insight into implementation details
• no structural coverage information
• no log analysis

• Complex test objects
• Primary goal: Error detection

Predominat System Development

OEM

System Test

17

Test Case Design
OEM Requirements on Test Case Design Methods

support of functional (black-box) testing
systematic, stepwise procedure
abstraction from concrete test data
easy to use, easy to learn (suitable for non-programmers)
test case descriptions using natural language and graphical
representations (formal parts hidden)
tool support, high degree of automation
quality metrics, coverage of test relevant aspects
comprehensive test documentation

traditional black-box testing techniques, such as equivalence
partitioning, boundary-value analysis are not fullfilling these
demands

18

Classification-Tree Method

efficient functional test method
with

systematic stepwise procedure
easy to understand
graphical notation with compact
representation of the overall test
extensive test documentation
tool support (CTE XL)
widely used in automotive
industry and other domains

19Input domain

SUT: radar-based distance warning system

Classification-Tree Method

Test relevant aspects

distance

largesmall

distance

shape

car CVcircle

shapespeed

speed

<=30 30-80 >80

1
2
3

kind

20Input domain

SUT: radar-based distance warning system

Classification-Tree Method

Test relevant aspects

distance

largesmall

distance

shape

car CVcircle

shapespeed

speed

<=30 30-80 >80

1
2
3

kind

Minimum number of test cases = 5
five disjoint classes for the
classification “shape”

21Input domain

SUT: radar-based distance warning system

Classification-Tree Method

Test relevant aspects

distance

largesmall

distance

shape

car CVcircle

shapespeed

speed

<=30 30-80 >80

1
2
3

kind

22Input domain

SUT: radar-based distance warning system

Classification-Tree Method

Test relevant aspects

distance

largesmall

distance

shape

car CVcircle

shapespeed

speed

<=30 30-80 >80

1
2
3

kind

Maximum number of test cases
2 * 3 * 5 = 30

23Input domain

SUT: radar-based distance warning system

Classification-Tree Method

Test relevant aspects

distance

largesmall

distance

shape

car CVcircle

shapespeed

speed

<=30 30-80 >80

1
2
3

kind

24Input domain

SUT: radar-based distance warning system

Classification-Tree Method

Test relevant aspects

distance

largesmall

distance

shape

car CVcircle

shapespeed

speed

<=30 30-80 >80

1
2
3

kind

Rules for test case generation, e.g.
distance * speed => 6 test cases

25

Model-based Testing

Development of test models
use of common modeling languages, e.g. StateCharts,
MSCs
primarily for tests on bus
protocol level, e.g. CAN,
LIN, MOST, FlexRay
easy to understand
test documentation
powerful tool support (providing
abstractions for defined messages, e.g. Modena)
widely used in automotive industry and other domains

26

• Common testing criteria
– execute every state introduced for the test
– execute every transition
– execute sequences of certain length

Pause

Forward

Play
Message „Play“

Message „Pause“

Message „FW“

Message „Play“

BackwardMessage „BW“

Message „Play“

Model-based Testing

Modena

27

Why testing continuous behavior is different...
systems under test are
• signal driven and/or event driven
• functional complex due to data complexity (“large interfaces”)
• functional complex due to timing complexity (sequences, temporal

conditions, signal processing etc.)
– Noise
– Monotony
– Sequences (off on off)

• hybrid systems (mixture of continuously
changing and static inputs/control and
information systems)

ECU

deceleration
values

Difficult to cope with conventional test methods

28

Time-Partition-Testing

System under test

in
pu

ts

ou
tp

ut
sBRAKE

PEDAL SPEED

• Test cases stimulate the system under test by continuously defining
input quantities for the system under test

Test case

• Test cases react on the system behavior by observing the output
quantities

?

29

Time-Partition-Testing
Test Modeling

1. Start engine

2. Accelerate until speed 50 km/h has

been reached

3. Emergency brake with steering

wheel as far as it will go left-hand

4. Stop the car

5. Ignition off

System Testing Scenarios often
consist of a sequence of logical
phases

Start engine

Accelerate

Emergency brake with the
steering wheel to the left

Stop the car

Ignition off

50 km/h have
been reached

Such sequences are described with
TPT using naturally readable state
machines

30

Time-Partition-Testing
Test Modeling

Start engine

Accelerate

Emergency brake with the
steering wheel to the left

Stop the car

Ignition off

repetition
necessary

10 attempts done

50 km/h have
been reached

Details of the sequences can be hidden
by hierarchical state machines

Ignition on Start
Engine

Press the
gas pedal

Start engine

Parallel state machines allow intuitive
and powerful test models of more
complex sequences

Brake
100%

Release
brake

as soon as the gas
pedal is pressed

Possibility to model more complex
situations (e.g., branches and loops)

Such sequences are described with
TPT using naturally readable state
machines

31

Time-Partition-Testing
Test Modeling

Start engine

Accelerate

Emergency brake with the
steering wheel to the left

Stop the car

Ignition off

repetition
necessary

10 attempts done

50 km/h have
been reached

Equations with C-like syntax are used for
executable signal definitions on the lowest
level

pedal(t) = min(10 + 10 * t, 100)
brake(t) = 0.0
handbrake(t) = 0.0

speed(t) >= 50.0

Transition conditions are precisely
defined by expressions

count <= 9 /* Condition */

count = count + 1; /* Action */

32

Time-Partition-Testing
Combination of Scenarios

Accelerate Speed has been reached Emergency brake

with full
throttle

with reduced
throttle

30km/h 50km/h 120km/h steering wheel
to the left

steering wheel
to the right

steering wheel
slightly left

? ? ? ? ? ?

test case
test case
test case
test case ? ?

33

Time-Partition-Testing
Combination of Scenarios

Accelerate Speed has been reached Emergency brake

with full
throttle

with reduced
throttle

30km/h 50km/h 120km/h steering wheel
to the left

steering wheel
to the right

steering wheel
slightly left

? ? ? ? ? ?

Start engine

Accelerate
with full
throttle

Stop the car

Ignition off

120 km/h has
been reached

Test case

Emergency brake
steering wheel to the

left

? ?

34

Time-Partition-Testing
Combination of Scenarios

Accelerate Speed has been reached Emergency brake

with full
throttle

with reduced
throttle

30km/h 50km/h 120km/h steering wheel
to the left

steering wheel
to the right

steering wheel
slightly left

? ? ? ? ? ?

test case
test case
test case

test case ??

Start engine

Accelerate
with full
throttle

Stop the car

Ignition off

120 km/h has
been reached

Test case

Emergency brake
steering wheel to the

left Start engine

Accelerate
with reduced

throttle

Stop the car

Ignition off

Test case

Emergency brake
steering wheel to the

right

120 km/h has
been reached

35

Time-Partition-Testing

Test Execution

• Fully automated test execution

• TPT virtual machine for test execution (small and efficient real-time execution
engine)

• TPT VM available for different test and simulation environments, e.g.
• Software-In-The-Loop (Matlab/Simulink)
• Hardware-In-the-Loop

36

Time-Partition-Testing
Test Execution
• Assessment language based on Python scripts
• Generated test documentation of analyzed test results
• Based on configurable templates
• Generates documents in HTML, PDF and RTF

37

Search for interesting test data fully automatically by
• transforming the test problem into an optimisation problem,
• interpreting the test object‘s input domain as search space
• applying meta-heuristic search techniques, such as evolutionary

algorithms to solve this problem

• representation of individuals/test data
• test objective has to be defined numerically (suitable fitness function)
• fitness assessment for generated test data based on monitoring results
• iterative procedure, combining good test data to achieve better test data

Evolutionary Testing

38

Different test objectives require different fitness functions

• Functional testing search for test datum causing logical error

• Real-time testing search for test datum with longest and shortest execution time

• Safety testing search for test datum violating system safety constraints

• Robustness testing search for test datum stressing fault-tolerance mechanisms

• Structural testing search for test datum executing particular program construct

• Mutation testing search for test datum which detects the injected fault

Evolutionary Testing
Transforming Test Objectives into Search Problems

39

Evolutionary Testing
of Autonomous Parking System
System description
• Measuring the size of the parking space using

environmental sensors and parking space model
• Signaling sufficient sized parking spaces to the driver

• If parking is committed by the driver:

- Determine the position of the car with respect to the
parking space

- Plan the trajectory path for the parking maneuver

- Drive the car into the parking space autonomously

Stop

40

Evolutionary Testing
of Autonomous Parking System

psi

gap

dist2space

space length

space
width

Generation of parking scenarios by evolutionary algorithms varying
• space width
• space length
• dist2space
• gap, and
• angle psi

41

Evolutionary Testing
of Autonomous Parking System

• Selection of smallest distance between car and collision area as fitness
value (negative values also allowed)

• Error found if parking maneuver could be
generated leading to a fitness value <= 0

42

Evolutionary Testing
of Autonomous Parking System

Generation 01 / Individual 13

Correct Scenario

Generation 10 / Individual 02

Critical Scenario

Generation 20 / Individual 06

Scenario leading to erroneous system behavior (edge entered collision area)

Generation 20 / Individual 05

Scenario leading to erroneous behavior (end-position in collision area)

43

Conclusion

• Most testing is black-box testing

• Methods necessary to support systematic test case design

– graphical methods preferred

– applicable without programming background

• Test automation important for test efficiency and high test coverage

• Ideally, tools support both issues

• Vision: Berner & Mattner Messina platform capable of executing test
cases defined by different methods on different target systems
integrating various system models

44

References

Wegener, J. (2005): Systematic Black-Box Test Case Design. TTCN-3
User Conference, France.

Video on Automatic Braking System, Zweites Deutsches Fernsehen,
2002.

• CTE – www.systematic-testing.com

• Modena – www.berner-mattner.com

• TPT – www.piketec.com

• Messina – www.berner-mattner.com

