
Arent Janszoon Ernststraat 595-H
NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

November 29, 2007

Observing Unit Test Maturity in the Wild

Ilja Heitlager, Managing Consultant Software Risk Assessments

2 I 18

Software Improvement Group

Company

• Spin-off from CWI in 2000, self-owned, independent

• Management consultancy grounded in source code analysis

• Winner of the Innovator Award 2007

Services

• Software Risk Assessments (snapshot) and Software Monitoring (continuous)

• Toolset enables to analyze source code in an automated manner

• Experienced staff transforms analysis data into recommendations

• We analyze over 50 systems annually

• Focus on technical quality, primarily maintainability / evolvability

3 I 18

Our services

Software Risk

Assessment

Remeasurement

Monitor

Portfolio Monitor
Software

Analysis

Toolkit

4 I 18

Who is using our services?

Government Logistical IT OtherFinancials / Insurance companies

5 I 18

What is unit testing

An automated unit test is an additional unit of software that is

• reduces risk by making the system bug repellent

• fully automated and repeatable

• easy to write and maintain

• non intrusive and does no harm

• documenting

• applies to the simplest piece of software

6 I 18

Why unit testing?

Build Quality In:
 If you routinely find defects in your verification process, your process is defective.

Mistake-Proof Code with Test-Driven Development
 Write executable specifications instead of requirements.

Stop Building Legacy Code
 Legacy code is code that lacks automated unit and acceptance tests.

The Big Bang is Obsolete
 Use continuous integration and nested synchronization.

Mary Poppendieck, Lean Software Development Principles

7 I 18

Role of unit testing

ISO 9126

•Changeability

•Analysability

•Stability

•Testability

ISO 9126

Reliability

EfficiencyMaintainability

Functionality
Usability

Portability

8 I 18

Our experience base

Organization

• public, financial, logistics

• under contract, in house, product software

• with test departments, without test departments

Architecture & Process

• under architecture, using software factories

• model driven, handwritten

• open source frameworks, other frameworks

• using use-cases/requirements

• with blackbox tools, t-map

Technology

• information systems, embedded

• webbased, desktop apps

• java, c#, 4GL’s, legacy

• latest trend: in-code asserts (java.spring)

9 I 18

Stage 1

No unit testing

Observations:

• Very few organizations use unit testing

• Also brand new OO systems without any unit tests

• Small software shops and internal IT departments

• In legacy environments: programmers describe in words what tests they have

done.

Symptoms:

• Code is instable and error-prone

• Lots of effort in post-development testing phases

10 I 18

Stage 1

No unit testing

Excuses:

• “It is just additional code to maintain”

• “The code is changing too much”

• “We have a testing department”

• “Testing can never prove the absence of errors”

• “Testing is too expensive, the customer does not want to pay for it”

• “We have black-box testing”

Action

• Provide standardized framework to lower

threshold

• Pay for unit tests as deliverable, not as effort

11 I 18

Stage 2

Unit test but no coverage measurement

Observations

• Contract requires unit testing, not enforced

• Revealed during conflicts

• Unit testing receives low priority

• Developers relapse into debugging practices without unit testing

• Good initial intentions, bad execution

• Large service providers

Symptoms:

• Some unit tests available

• Excluded from daily build

• No indication when unit testing is sufficient

• Producing unit test is an option, not a requirement

12 I 18

Stage 2

Unit test but no coverage measurement

Excuses:

• “There is no time, we are under pressure”

• “We are constantly stopped to fix bugs”

Actions

• Start measuring coverage

• Include coverage measurement into nightly build

• Include coverage result reports into process

13 I 18

Stage 3

Coverage, not approaching 100%

Observations

• Coverage is measured but gets stuck at 20%-50%

• Ambitious teams, lacking experience

• Code is not structured to be easily unit-testable

Symptoms:

• Complex code in GUI layer

• Libraries in daily build, custom code not in daily build

14 I 18

Stage 3

Coverage, not approaching 100%

Excuses

• “we test our libraries thoroughly, that effects more customers”

• “Our software is hard to unit test”

Actions:

• Refactor code to make it more easily testable

• Teach advance unit testing patterns

• Invest in set-up and mock-up

15 I 18

Stage 4

Approaching 100%, but no test quality

Observations

• Formal compliance with contract

• Gaming the metrics

• Off-shored, certified, bureaucratic software factories

Symptoms:

• Empty tests

• Tests without asserts.

• Tests on high-level methods, rather than basic units

• Need unit tests to test unit tests

16 I 18

Stage 4

Approaching 100%, but no test quality

Anecdotes:

• “We have generated our unit tests (at first this seems a stupid idea)”

• Tell me how you measure me, and I tell you how I behave

Action:

• Measure test quality (statically)

• Number of asserts per unit test

• Number of statements tested per unit test

• Ratio of number of execution paths versus number of tests

17 I 18

Stage 5

Measuring test quality

Enlightenment:

• “We don’t know how to do without”

• Measure statically:

• Production code incorporated in tests

• number of assert and fail statements

• low complexity of tests (not too many ifs)

• The process

• part of daily automated build

• “stop the line process”, fix bugs first by adding more tests

• happy path and exceptions testing

• code first, test first, either way

18 I 18

Conclusion

Unit test is an essential technique, however

• Unit testing is a close interaction between:

• Software architecture

• Testing framework

• Process

• and Code monitoring (both static and dynamic)

• There is no immediate acceptance

• We observe and classify in five stages of acceptance

• Each stage has its own excuses and counter actions

• Companies of various backgrounds and sizes are at different levels

