
Radboud University Nijmegen

Lars Frantzen
lf@cs.kun.nl
www.cs.kun.nl/~lf/

Formal Testing of Smart Cards

10th Dutch Testing Day
Leiden, October 8 - 2004

The Group

 Arjen van Weelden <arjenw>

 Martijn Oostdijk <martijno>

 Pieter Koopman <pieter>

 Jan Tretmans <tretmans>

 Lars Frantzen <lf>

Motivation

 Combine testing and verification expertise

 Proof of concept for the GAST tool

 Embed automatic testing in the development process

Smart Cards
Smart Cards are omnipresent:

 Electronic Banking

 Telecommunication

 Identity determination

 Everyday life

Hence they are critical w.r.t.:

 Safety

 Security

 Interoperability

Java Cards

 Secure environment for applications that run on SC

 Very limited memory and processing capabilities

 Multiple applications can be deployed

 New ones can be added

Java Cards

Java Cards

IUT

Testing - Kinds

Characteristics

unit

integration

system

performance
robustness

functional
behaviour

white box black box

Level of detail

Accessibility

usability

reliability

module

security

Testing - Kinds

Characteristics

unit

integration

system

performance
robustness

functional
behaviour

white box black box

Level of detail

Accessibility

usability

reliability

module

security

Model-Based Testing

informal
requirements

formal
model

formal
modelling

system
implementation

implementing

formal verification,
simulation

validation

formal
testing

A Simple Purse Applet
The input events which the electronic purse
can receive from the terminal are:

 setValue(n)
 getValue()
 debit(n)
 authenticate(pin)
 credit(n)
 reset(puk)

Output event (sent to the terminal) are:
 ack(n)
 error(n)

A Statechart Model

A Statechart Model

GAST

GAST (Generic Automatic Software Test)

 automatic test generation, execution, analysis

 implemented in the FL CLEAN

 EFSM-like specifications

 lazy evaluation

 on-the-fly execution

The Test Architecture

Experiences: Development
 The model and the applet were developed
 simultaneously
 both evolved iterative

 Some issues here were:

 Gap between specifications (ISO-7816) and
 implementations (Java Cards)

 Implicit model assumptions, e.g. non-negativity
 of numbers

 Model may leave out crucial implementation issues

Experiences: Development

 Lessons learned:

 Implementing a simple applet is far from trivial

 Iterative co-development of model and
 implementation is very useful

 Both evolve simultaneously, leading to a complete
 and reliable specification and implementation

 Model-based, automatic testing is vital

Experiences: Mutants
 20 Mutants were created, e.g.:

1) Omit check for MAXVALUE when doing setValue()

2) Check (value + n) <= MAXVALUE instead of
 n <= (MAXVALUE – value), may lead to an overflow

3) Do not check, if one debits more than the actual
 credit, leading to a negative value

4) Do not reset tries-counter after authentication

5) Do not reset tries-counter after reset()
...

Experiences: Mutants
Mutant Test events Paths Time Type

 1 166 33 0.4s ADT

 2 40676 7629 71.0s SC

 3 78 22 0.2s ADT

 4 1086 60 1.4s SC

 5 41704 6918 66.0s ADT

Summary / Outlook

 Promising framework to support an
 iterative, model-based development of
 Smart Card applets.

 Integration of automatic testing allows for a
 quick and vast improvement of the quality of
 both specification and implementation.

 Testing a real-world application is planned.

 Also other test tools will be embedded.

Literature

Broy, Jonsson, Katoen, Leucker, Pretschner (Eds.):
Model-based Testing of Reactive Systems -
A seminar volume
LNCS, to appear in 2004

Weelden, Frantzen, Oostdijk, Koopman, Tretmans:
On-the-fly Formal Testing of a Smart Card Applet
NIII Report NIII-R0428, June 2004
www.cs.kun.nl/research/reports/full/NIII-R0428.pdf

Thank You!

