
On-the-Fly Formal Testing

of a Smart Card Applet

Arjen van Weelden, Lars Frantzen, Martijn Oostdijk,
Pieter Koopman, and Jan Tretmans

Nijmegen Institute for Computing and Information Sciences (NIII)
Radboud University Nijmegen – The Netherlands

{arjenw,lf,martijno,pieter,tretmans}@cs.kun.nl

Abstract. Smart cards are used in critical application areas. This means
that their software should function correctly. Formal methods are indis-
pensable in obtaining high quality systems. This paper presents a case
study on the use of formal methods in specification-based, black-box test-
ing of a smart card applet. The system under test is a simple electronic
purse application running on a Java Card platform. The specification of
the applet is given as a Statechart model, and transformed into a func-
tional form to serve as the input for the test generation, -execution, and
-analysis tool Gast. Several test runs were conducted, completely au-
tomatically, and altogether consisting of several millions of test events.
The tests were applied on an (assumed to be) correct applet implemen-
tation, as well as on some error-seeded implementations. They showed
that automated, formal, specification-based testing of smart card applets
is feasible, and that errors can be detected.

1 Introduction

Smart cards Smart devices play an increasingly important role in many appli-
cations in electronic banking, telecommunication, identity determination, etc.
These kind of applications put high requirements on the quality of such devices,
in particular on properties like safety, security, and interoperability. This even
more applies to open smart devices where multiple applications can dynamically
be put on a single device, which may lead to many forms of intended and un-
intended interaction between those applications. These multi-application cards
commonly contain a Java Card virtual machine, which is able to execute Java
Card applets [Che00]. Each application is then implemented as a separate ap-
plet. In this paper we will consider the functional correctness of such a Java
Card applet: a simple electronic purse application.

Formal methods Formal methods refer to the use of mathematical and logical
techniques to specify, model, and reason about systems. This allows to give
formal proofs of properties, e.g., safety or security properties, with mathematical
rigor, thus increasing the confidence in the correct functioning of systems. Formal
methods are expected to play an increasingly important role in guaranteeing the

quality of smart devices. Smart devices, on the one hand, are used in very critical
and secure environments so that their correctness is of utmost importance. On
the other hand, smart cards and the applications running on them are sufficiently
small to make a complete formal treatment with current day formal technology
feasible.

The behavior of our simple purse application is modeled with a Statechart
[UML], which, in turn, is expressed in the formal, functional language Clean

[PvE]. This Clean expression then serves as the formal specification of the
simple purse application.

Testing Testing is an important, in practice even the dominating technique to
check the correctness of systems. Testing consists of performing, in a controlled
way, experiments on a system under test in order to see whether the system
has the desired properties. Traditionally, testing is performed using informal
methods, i.e., tests are manually developed based on some informal, natural lan-
guage description of the system specification, and also test results are manually
analyzed and judged. Such a testing process is laborious and error-prone, and
moreover the natural language specifications often lead to ambiguities and mis-
interpretations about the system’s required properties. And, if the requirements
are not clear, it is, of course, difficult to test whether the system does what it
should do.

Formal testing In formal testing the starting point is a formal specification,
which prescribes the required properties of the system under test. The system
under test itself is seen as a black box, without internal detail, and communi-
cating with its environment via its interfaces. Testing is used to check whether
the system has the formally specified properties. To achieve this, test cases are
algorithmically generated from the formal specification. A test case specifies the
experiment to be performed to check a property, or part of a property. Since the
system under test is seen as a black box, the test must be expressed in terms
of stimuli (inputs) and responses (outputs) on the system’s interfaces. During
the execution of the specified experiment, preferably using some automated test
environment, the test results are analyzed, again algorithmically, with respect
to the formal specification.

Formal testing alleviates two problems of traditional testing. First, the for-
mality of the specification reduces the ambiguities and misinterpretations about
the system’s required properties. Secondly, formal specifications allow algorith-
mic generation of test cases and analysis of results, thus making it possible to
automate the whole testing process. That is what we will pursue in this paper.

There are different approaches to formal testing, mostly depending on the
formalism in which the specification is expressed. Examples are testing with
finite state machine specifications [LY96], testing where the program under test is
seen as a function [KATP03], testing based on transition system models [Tre99],
testing using abstract data type specifications [Gau95], model based testing using
abstract state machines [BGN+04], and others. For most of these approaches test

2

tools have been developed to support and automate the formal testing process
[BFS04].

Testing and verification Formal verification and testing are complementary tech-
niques for analysis and checking of properties of systems. Whereas verification
aims at proving properties about systems by formal manipulation on a mathe-
matical model of the system, testing is performed by exercising the real, execut-
ing implementation (or an executable simulation model). Verification can give
certainty about satisfaction of a required property, but this certainty only ap-
plies to the model of the system: any verification is only as good as the validity
of the model on which it is based. Testing, being based on observing a finite set
of system behaviors, which for any realistic system is only a very small subset
of all possible instances of system behavior, can never be complete: testing can
only show the presence of errors, not their absence.

But since testing can be applied to the real implementation, it is useful in
those cases where a valid and reliable verification model is not available. This
can occur when the system is too large or too complex to make a complete
verification model, when the system is a combination of formal parts and parts
that are difficult to be formally modeled, e.g., physical devices, or an operating
system, or when the structure or code of the system are not accessible, e.g., in
case of proprietary code. Even when a model is available and formal verification
is applied, testing is the technique to show that the model is valid, and that the
real system conforms to the model.

For our simple purse application we have a formal specification, viz. the Stat-
echart or Clean specification, we have the Java Card source code of the applet
implementation, and, when necessary, we can have the Java Card byte code. This
means that we could formally have verified the applet code in isolation with re-
spect to the specification. We do not have the code of the Java Card execution
platform: it is proprietary. This means that we cannot verify the execution plat-
form, nor the combination of applet and execution platform. With testing we
check the combination of applet, execution platform, and card hardware, i.e., we
test whether the applet correctly communicates with the card environment.

Goal The purpose of this paper is to report about an experiment of automatic,
formal specification-based testing of a Java Card applet. The aim of the ex-
periment is to investigate the feasibility of formal testing, to show that indeed
(inserted) errors can be detected in such an applet, and to compare with other
testing approaches for smart cards.

The test set-up The applet that we test is the simple electronic purse application,
implemented as a Java Card applet with a limited set of methods like asking the
value on the card, debiting, crediting, etc. The applet is executed on the CREF

Java Card simulation platform, which is part of the Java Card Development Kit

[JC]. Using a simulation environment allows easy modification of the applet,
e.g., seeding it with subtle bugs, whereas it does not restrict the generality of
the experiment: all communication between the simulation environment and the

3

test tool occurs via the standardized ISO-7816 protocol [ISO97], so that the
simulation environment could be replaced by a real smart card without any
other changes.

To automate the testing process we use the test tool Gast [KATP03,KP04].
Gast is a test generation, -execution, and -analysis tool which takes proper-
ties expressed as functions in Clean, generates test input data based on the
types occurring in those properties, sends these input data to the applet un-
der test on the simulation platform, catches the return values from the applet,
and checks whether these values satisfy the properties. The input to Gast is a
Clean representation of the specification Statechart, and then all these steps
are automatically performed in an ”on-the-fly” fashion. ”On-the-fly” means that
test generation, -execution, and -analysis are alternatingly performed, only as
far as needed, and that no explicit test case is generated.

An important practical aspect of automatic testing is connecting the test
tool, i.c. Gast, to the system under test, i.c. the simulation platform running
the applet. No general solution is available for implementing this part of the test
tool, which is sometimes referred to as ”glue software”, or ”test adapter”. In our
case it means that the ISO-7816 and TLP-224 protocols had to be implemented
manually in the test tool.

Using all these ingredients a couple of test runs were executed, both with
an (assumed to be) correct applet implementation, and with some error-seeded
implementations.

Overview The case, the simple electronic purse application, and the test tool,
Gast, are described in Sect. 2 and 3, respectively. Sect. 4 gives the formal
specification of the electronic purse in the input formalism for Gast. Then the
test architecture is described in Sect. 5: the set-up of components that allows
tests to be performed. The tests and their results are presented in Sect. 6. Finally,
Sect. 7 and 8 discuss related work, conclusions, and possible future extensions.

2 Case Study

To demonstrate our testing methodology we use a simple electronic purse appli-
cation as a case study. This section describes the application. The basic events
which the electronic purse can receive are:

– set an initial value n via setValue(n)

– query the actual value via getValue()

– pay an amount of n via debit(n)

– authenticate with a pin via authenticate(pin) before charging the card
– charge the card with an amount of n via credit(n)

– reset the card using a puk via reset(puk)

All these events are input events for the card, because they are triggered by the
terminal, i.e., they are sent from the terminal to the card. To every input event,
the card answers with a corresponding output event; these are:

4

– acknowledge an operation via ack(n)

– report an error via error(n)

Figure 1 shows the specification of the purse, modeled as a Statechart.

Authenticated

Invalid

Uninitialized

Initialized
credit(n) [value+n <= MAXVALUE]
/ value += n; tries := 0; ack(OK)

reset(puk) [puk ok]
/ ack(OK)

credit(n) [value+n > MAXVALUE]
/ error(INV_PARAM)

setValue(n) [n > MAXVALUE]
/ error(INV_PARAM)

debit(n) [value−n >= 0]
/ value −= n; ack(OK)

/ ack(value)
getValue()

debit(n) [value−n < 0]
/ error(INV_PARAM)

setValue(n) [n <= MAXVALUE]
/ ack(OK); value := n; tries := 0

authenticate(pin) [pin ok && tries < 5]
/ ack(OK)

authenticate(pin) [wrong pin && tries < 5]
/ error(INV_ID); tries ++

authenticate(pin) [tries >= 5]
/ error(INV_ID);

reset(puk) [wrong puk]
/ error(INV_ID)

Fig. 1. Statechart model of the purse applet.

The transition labels between two states s1 and s2 are of the form:

s1
i [g] / act
−−−−−−→ s2

with i being an input event, g being a guard, and act representing a sequence of
actions. We exemplify the semantics with this transition:

Authenticated
credit(n) [value+n ≤ MAXVALUE] / value+= n; tries:=0; ack(OK)
−−→ Initialized

Here, the input event i equals credit(n). All events can pass values via variables,
in this case the variable n is of type unsigned short1, and represents the amount
of money to be added to the card’s value due to a charge operation. The actual
value of the card is saved in the variable value. A transition can only fire when
the corresponding guard g holds. Every card has a maximum value, represented
by the constant MAXVALUE. The guard says, that one can only increase the value of
the card by n, when the new amount value+n does not exceed MAXVALUE. Finally,
act is a sequence of actions to be performed when the transition fires. At least
one output event, here ack(OK), must be performed. Additionally, variables can
be set to new values. The actions are executed in the sequence they are written,

1 the applet checks an unsigned short for being non-negative. We abstract from that
in the statechart to keep it concise.

5

separated by semicolons. In this case, the variable value is firstly incremented
by n, then the tries variable is reset to zero, and finally an acknowledgment is
sent to the terminal.

At first, the card is in the Uninitialized state. It then is initialized by the
credit institution, which issues the card to the customer by putting a certain
amount n of money on it via the setValue(n) event.

In the Initialized state the customer can query the actual value via the
getValue() event, or pay with the card via the debit(n) event. To increase the
value, one must first authenticate at a terminal with a card-specific PIN, leading
to the Authenticated state. Being in that state, one can add money via the
credit(n) event, leading back to the Initialized state.

The card checks that its value does not exceed the MAXVALUE. Furthermore
there is a maximum of five tries to enter the PIN. From the sixth wrong try on,
one can no longer credit the card. The only solution is now to bring the card
back to the credit institution and enter a reset code, called puk. If this code
is entered correctly, the card goes back to the Uninitialized state and can be
re-initialized via the setValue(n) event. If the PUK is entered wrongly, the card
goes to the Invalid state and can not be used anymore.

Two kinds of erroneous events can be sent to the card. Firstly, a syntactically
correct input event that is not specified for the actual state may occur, e.g., a
credit(n) when the card is in the Initialized state. Such an unspecified input
event is called an inopportune event, and the response of the applet should be an
error message error(INV_CMD), whereas the applet remains in its actual state.
Furthermore, a syntactically incorrect event that is not specified at all may occur,
e.g., a command-APDU with a non-existing event-code. This is also implicitly
assumed to lead to an error message, while the card stays in its actual state.

3 The Test Tool Gast in a Nutshell

3.1 Testing of functions with Gast

The test tool Gast performs automatic test generation, -execution, and -analysis
[KATP03,KP04]. To do this, Gast basically has two functionalities: generating
input data for the system under test, and checking properties specified to hold
for the output data.

For the first functionality, Gast implements a generic algorithm to enumer-
ate the elements of an arbitrary algebraic data type (ADT). Since the list of
all elements of a recursive type is infinitely long, lazy evaluation is employed to
generate only the fraction of this list that is actually needed. The elements are
ordered from small, without recursive constructors, to large, with much recur-
sion. Pseudo random numbers are used to make slight permutations in the list
of elements. The unique feature is that Gast can do this for an arbitrary ADT;
it does not need any further indication on how data is constructed.

This systematic generation of elements is secondly used to test specified prop-
erties stated in first order logic. In this paper we use a subset of first order

6

formulas of the following form:

ψ = ∀x1∀x2 . . . ∀xn ϕ

with ψ having no free variables and ϕ being quantifier-free2. For the model of
ψ must hold that the universes of the (typed) variables xi are given as ADTs,
and, of course, the functions must be computable. Both are guaranteed by the
fact that Gast is implemented in the functional language Clean [PvE].

The formula ψ states, that for every possible valuation of the variables xi

the formula ϕ must hold. In the case of infinite universes we also have infinitely
many valuations, therefore not all possible values can be tested (which would
accord to a proof of ψ). Hence, only a finite subset of the valuations is tested.
Due to the generation of values from small to large, this subset includes the
common boundary values for recursive types.

If a valuation is found such that ϕ does not hold, it is proven that also ψ does
not hold, and the testing can stop; the property is falsified and a counterexample
has been found. Otherwise it stops when a given upper bound of test cases
is reached. Then ψ is not proven, but at least the confidence in its validity
has increased. This corresponds to the famous dictum by Dijkstra: Testing can

never demonstrate the absence of errors, only their presence. For finite universes,
however, Gast is able to prove properties.

As a simple example think of the presumably most famous ADT – a stack.
Given a stack implementation Gast can be exerted to test properties like:

∀ i ∀ s
(

(Top(Push(i , s)) = i) ∧ (Pop(Push(i , s)) = s)
)

or:

∀s
(

size(s) 6= 0 → size(s) > size(pop(s))
)

with, for example, i being an integer, and s being a stack of integers. Gast will
start creating stacks with increasing size in a way that avoids duplicates. For
the integers, the pseudo random number generator is used after some predefined
boundary tests, like -1, 0, 1, have been applied. If the implementation is correct,
Gast will not find a counterexample, and will stop after the given number of
test cases. Given a wrong implementation and a sufficiently high upper bound,
a counter-example will be found.

The implementation of the stack may be written in the same language as in
which the properties are stated, i.e., Clean, but the implementation can also
be written in another language, to which Clean can connect, e.g., C. In this
case, routines have to be added to convert the C stack to a Clean stack, and
vice versa.

More details about Gast can be found in [KATP03,KP04].

2 The use of existential quantifiers is, in principle, allowed, but leads in the case of
infinite universes to semidecidability, which means that truth of an expression needs
to be approximated sometimes.

7

3.2 State-Based testing with Gast

In order to test the Java applet the approach described above has limited power.
It is possible to specify and test some specific properties, e.g., supplying the
input setValue(n) in the initial state followed by a getValue() should yield
an answer containing the same value n. It is, however, very tiresome to make a
more or less complete set of tests in this way, which also takes into account the
state behavior of the purse.

To allow for so called state-based testing, Gast has been extended to deal
not only with first order properties, but also with specifications given as Ex-
tended Finite State Machines (EFSM). Such an EFSM comes quite close to the
Statechart of Figure 1.

An EFSM consists of states with labeled transitions between them. A tran-

sition is of the form s1
i u∗

−−−→ s2, where s1, s2 are states, i is an input which
triggers the transition, and u∗ is a, possibly empty, list of outputs. Like for the
properties described above, the domains of the inputs, outputs, and states can
be given by arbitrarily complex, recursive ADTs. This constitutes the main dif-
ference with traditional testing with EFSM’s, see, e.g., [LY96], where for the
testing algorithms to work all domains must be finite. Moreover, traditional al-
gorithms require a deterministic EFSM, as opposed to Gast, and they usually
do not consider lists of outputs including the empty one to mimic the absence
of output, but this last restriction is, of course, trivially removed.

A Gast-EFSM is specified by a function that associates to each combination
of current state and input a list of possible transitions. Each transition yields
a pair of the list of outputs and the new state. When the list of transitions
for a particular state and input contains more than one pair, the specification is
nondeterministic. An implementation is then free to choose any of these specified
pairs. If no transition is specified for a particular state and input the EFSM is
underspecified, or incompletely specified. In this way, Gast is able to handle
partial specifications. By specifying an EFSM as a function over arbitrary ADT’s
Gast avoids the state-space explosion problem, from which traditional (test)
tools suffer, since these tools firstly transform any EFSM into an equivalent
FSM by enumerating all, necessarily finite, data domains.

Inside Gast the generation of input sequences is separated from checking of
the observed output behavior for these input sequences. This has the advantage
that it is very easy to experiment with different strategies of generating input
sequences. Some obvious choices for input generation are:

1. Since input sequences are just lists of elements, i.e., an ADT, Gast is able
to generate these lists automatically and systematically. Before applying the
next input symbol Gast checks whether it is appropriate in the current
state of the specification. If not, the input is rejected, and testing continues
with the next input sequence. This approach has as advantage that if an
error pops up, one of the shortest paths to this error is found. This makes
analysis of the error as easy as possible. For implementations that are slow
compared to Gast, like the case study treated in this paper, Gast is able

8

to test only the input sequences that can be completely executed according
to the specification.

2. If the specification is known to be an FSM Gast is able to generate input
sequences that visit all transitions in the FSM. In order to check that the
final state of each transition is correct, such a sequence is extended with
a checking sequence, e.g., a Distinguishing- or UIO-sequence [LY96]. Such
sequences must be supplied manually.

3. Instead of the standard generic generation of input values, the tester can
manually define his/her own list of values. This can be used to check specific
properties, or to exclude undesirable inputs. In the case study this is used to
ensure that the pin used for authentication is correct in one of 8 situations,
instead of having a chance of one out of 232. Another example is to focus
on checking the applet’s security by generating specific input sequences that
consist of a setValue followed by a long list of Authenticate’s with random
pins.

4. Finally, the specification can be used by Gast to generate long lists of inputs
that correspond to valid transitions in the EFSM. This is the way to discover
errors that pop up after a large number (e.g., 1000) of transitions.

In order to start each input sequence in the initial state it is required that
the system under test (SUT) can always be brought back to its initial state. If
this is not the case, Gast can easily be configured to construct paths starting
in a different state than the initial one. Again, the generation stops when a
given upper bound is reached. When a test case has passed the SUT, i.e., the
observed outputs match the ones specified in the EFSM, the next test case is
generated and applied. If a non-conformance is detected, the test is aborted, and
the counter-example is reported.

4 The Purse Specification for Gast

Before starting to test with Gast, the Statechart specification of the simple
electronic purse in Fig. 1 must be expressed as an EFSM in Clean, the input
language for Gast. This section gives the details of this transformation. It can be
skipped, without consequences for reading the remaining sections of the paper,
by readers not interested in this transformation.

The Statechart specification of a Java Card application, like the one for the
electronic purse, can be transformed directly into Clean following the principles
explained in Sect. 3.2. We define a special ADT for the states, one ADT for the
inputs, and an ADT for the outputs:

:: PurseState = NotInitialized | Initialized Short Short

| Authenticated Short | Invalid

:: PurseInput = Reset Puk | SetValue Short | Debit Short

| GetValue | Authenticate Pin | Credit Short

:: PurseOutput = Ack Short | AckOK

| ErrorINV_PARAM | ErrorINV_ID | ErrorINV_CMD

9

The use of algebraic data types has several advantages. First, the use of
ADT’s enables us to write very concise specifications, and to have an almost one-
to-one mapping to Statechart models. Secondly, the use a special algebraic data
type for inputs enables Gast to systematically generate all possible sequences
of inputs. Last but not least, the use of these types enables the Clean compiler
to check that the specification is well typed.

The actual specification is the function purse that takes the current state
and input as an argument and produces a list of tuples describing the allowed
transitions. Each tuple contains the new state, like NotInitialized, and a list
of outputs, like [AckOK]. The square brackets transform the constructor AckOK
to the singleton list containing only this output. Since the specified applet is
deterministic, there is no function alternative that contains a list of more than
one tuple describing a new state and output.

Clean is a lay-out sensitive language. It does not use keywords for then and
else, instead the then-part is placed on the next line, and the else-part on the
line below.

purse :: PurseState PurseInput -> [(PurseState, [PurseOutput])]

purse NotInitialized (SetValue n)

= if (n >= 0 && n <= MAXVALUE)

[(Initialized 0 n, [AckOK])]

[(NotInitialized, [ErrorINV_PARAM])]

purse (Initialized tries value) Reset

= [(NotInitialized, [AckOK])]

purse (Initialized tries value) GetValue

= [(Initialized tries value, [Ack value])]

purse (Initialized tries value) (Debit n)

= if (n >= 0 && n <= value)

[(Initialized tries (value - n), [AckOK])]

[(Initialized tries value, [ErrorINV_PARAM])]

purse (Initialized tries value) (Authenticate pin)

= if (tries < 5)

(

if (pin == PIN)

[(Authenticated value, [AckOK])]

[(Initialized (inc tries) value, [ErrorINV_ID])]

)

[(Initialized tries value, [ErrorINV_ID])]

purse (Authenticated value) (Credit n)

= if (n >= 0 && n <= MAXVALUE - value)

[(Initialized zero (value + n), [AckOK])]

[(Authenticated value, [ErrorINV_PARAM])]

10

purse state any = []

The Clean code for the specification is very close to the Statechart model,
leaving little room for errors. Only one of the issues encountered during the de-
velopment and testing of the applet was due to a mistake in this transformation
from the Statechart to the specification in Clean. Automating the transforma-
tion would help prevent such errors. Still, such a tool would require a hand-
written formal specification, which might contain the same kind of mistakes as
programming the specification in Clean.

The code for the specification as shown above only specifies how the applet
should respond to correct inputs, and is therefore incomplete. Insiders can see
this from the last line of the Clean code, which states that there are no transi-
tions possible from any inputs on any state that are not handled by lines above
the last. To make sure that the applet does not allow transitions (inopportune
input events) that are not specified by the model, the Clean code can easily be
made complete. Changing the last line of the code into

purse state any = [(state, [ErrorINV_CMD])]

specifies that the applet should output error(INV_CMD) for inputs on states
that are not present in the model, and stay in the same state as it was before
the input.

5 Testing Java Cards with Gast

The tests, which will be described in Sect. 6, have been executed using the test
architecture of Fig. 2.

CREF

Specification

Data Data
Generation Analysis

GAST

IUT
Java Card Applet

Virtual Machine

ISO 7816

TLP 224 TLP PDUs

APDUs ISO 7816

TLP 224

Adapter

TCP / IP

Fig. 2. The general testing framework.

The implementation under test, IUT, is the Java Card applet implementing
our simple electronic purse. To make testing easier and more flexible, we used

11

a simulation platform to execute the applet. The simulation environment was
the C-language Java Card Runtime Environment (CREF), which comes with
the Java Card Development Kit [JC]. CREF simulates a Java Card technology-
compliant smart card in a card reader. It further consists of a Java Card Virtual
Machine, and communication protocol entities to allow communication between
the applet and the outside world. This communication uses special smart card
protocols as specified by ISO-7816-4 and TLP-224 [ISO97], on top of a TCP/IP
stack.

To communicate with the applet under test, Gast was enhanced to be able
deal with these typical smart card communication protocols ISO-7816-4 and
TLP-224. On top of these protocol entities an Adapter, also referred to as ”glue
code”, was implemented. The Adapter transforms the high level inputs, gener-
ated by Gast, and represented as Clean data values, into the low-level APDUs,
coded as appropriate byte codes, and then sent according to the ISO-7816-4

protocol. Vice versa, the Adapter decodes the APDUs received from the applet
under test to Clean data values, which are then analyzed and checked by Gast.

For data generation and analysis Gast uses the Clean EFSM specification,
which was developed in Sect. 4. Except for the access to TCP/IP, the right-hand
side of Fig. 2 was implemented in Clean.

The use of a simulation platform for testing is not a restriction with respect
to testing of real smart cards. Since only standardized protocols are used, Gast

cannot see the difference between testing on a simulator, or testing a real smart
card. The test architecture could easily be adapted to test real cards by ex-
changing only CREF with a real card and its reader. On the other hand, use of
a simulation platform facilitates easy modification of the applet, e.g., for seeding
errors, as we will see in the next section. Moreover, the use of a simulator has
the advantage that once a test case brings the card in the invalid state, we can
simply restart the simulation instead of reinstalling the applet. To do a lot of
tests in the least amount of time, we deliberately avoided the transition to the
invalid state with Gast.

6 Results

We tested the simple purse applet described in Sect. 2 with the test tool Gast

in the test architecture of Fig. 2. Many test runs were performed, first during
the development of the applet and its specification, and later with a couple of
mutants. The results of these tests are described in this section.

During testing several differences between the applet and its specification did
show up. Most differences could be accounted for by the applet, which did not
always faithfully implement the model. But also the specification was changed
on a few occasions, mainly because it was not clear, or not complete, on certain
points.

12

6.1 Experiences during development

The formal model and the applet were simultaneously developed in an incremen-
tal way. Starting with a very trivial applet (to try out the framework described
in the previous section), functionality was added to both the applet and the
model until the semi-realistic purse application described in Sect. 2 was realized.

During this process Gast was applied to several incarnations of the applet
and the model, yielding some interesting inconsistencies between applet and
model. Some typical issues that were found are:

– Initially, class bytes and instruction bytes were chosen, for the actual inputs
for the applet, that were not allowed according to the ISO-7816 specification
(yet these seem to work fine on actual Java Cards).

– Some checks for non-negativity, which are implicit in the model, and for
maximum balance were not included in the applet.

– When the wrong pin-code was entered, the applet would internally change
its state correctly, but fail to report this. Instead, a normal acknowledgment
was sent back to the terminal.

– In the applet the tries counter was not set back to zero by the reset

command.
– The model would increment the tries counter, even after it had reached 5.

This caused an overflow in the model. This overflow was not present in the
applet, otherwise we might have missed it completely.

These issues show that implementing a (relatively simple) Java Card applet
in an incremental way is far from trivial. Having two different persons develop-
ing the applet and its specification, and having automatic testing for checking
compliance between them, turns out to be very useful.

After some iterations, no more errors could be found by our testing tool. The
resulting applet is considered to be bug-free. Running Gast on this final applet
yielded the following result:

20,000,000 test paths used,

testing terminated,

19,316,244 rejected,

0 tests truncated,

in total 683,757 paths executed,

2,455,843 transitions.

The test paths above are the input sequences generated by Gast. Such a path
is rejected if it cannot completely be executed by the specification. No inputs
of a rejected path are applied to the applet, because the prefixes of the path
that do successfully run through the specification have already been generated
before by Gast. This is due to Gast’s systematic generation of test paths from
short to long. A test path is truncated when the next input of that path cannot
be handled by the specification in the current state. This does not occur in our
specification because it is deterministic.

13

Our testing tool ran for 1:45 h. on a 1400 megahertz PC. Only ten percent of
its time was spent generating test paths and analyzing results. It appears that
fifty percent of the time was used by Windows for communication between Gast

and the simulator. The other forty percent is used by the simulator to run the
applet. This strengthens our belief that Gast is an efficient test generation tool.

6.2 Mutant testing

The results given above show that applying Gast helps to find errors during
development. A more systematic way to investigate the testing power of the
Gast system uses mutants. Starting from the ideal (assumed to be correct)
applet we inject typical programming errors into the applet, and analyze how
long it takes for Gast to find these.

1. The first mutant differs from the ideal applet in the code dealing with the
setValue command. The check on whether value is at most MAXVALUE is
left out.

2. The second mutant differs from the ideal applet in the code dealing with the
credit command. The comparison n > (MAXVALUE−value) is replaced with
the comparison (n + value) > MAXVALUE. (The sub-expression n + value

can overflow, leading to a negative balance, even if both n and value are
positive.)

3. The third mutant differs from the ideal applet in the code dealing with the
debit command. The check on whether the amount to be debited n is smaller
than the actual balance value is left out.

4. The fourth mutant differs from the ideal applet in the code dealing with the
authenticate command. The tries counter tries is not reset to zero, after
successful authentication.

5. The fifth mutant differs from the ideal applet in the code dealing with the
reset command. The tries counter tries is not reset to zero during a reset.

The results of the tests are in the table below. It shows the number of test
events that took place, the number of test paths that were actually applied to
the applet, the total number of generated paths by Gast, and the time it took
to run the test. To speed-up the testing, not all generated test sequences are
actually applied, as explained above: each path is checked against the Clean

specification, and rejected if the specification returns an empty list of states.

mutant test events paths generated time comments
1 166 33 173 0.4s automatic
2 40676 7629 749701 71.0s automatic
3 78 22 118 0.2s automatic
4 1086 60 460 1.4s guided
5 41704 6918 96386 66.0s automatic

Gast was able to show the presence of errors in three mutants without any
help. It needed guidance on the other two mutants, in order to find a counter

14

example within a limit of 100000 generated tests. The counter examples found
by Gast are listed in the table below.

mutant counter example
1 setValue(12567)

2 setValue(MAXVALUE), authenticate(pin), credit(32767)

3 setValue(0), debit(1)

4 setValue(0), authenticate(wrong pin),

authenticate(wrong pin), authenticate(wrong pin),

authenticate(wrong pin), authenticate(pin), credit(100),

authenticate(wrong pin), getvalue(), authenticate(pin)

5 setValue(2436), authenticate(wrong pin), authenticate(pin)

At first, it looked like Gast could not find the error in mutant 2. Even
worse, a manually devised test path, setValue(1), authenticate(pin), cre-
dit(32767), getvalue(), did not find the possible overflow error present in the
mutant. It turned out that Gast rejected the test path because, according to
the model, getvalue() is not valid in the Authenticated state. This, in turn,
is caused by the fact that Gast stays in the Authenticated state after the
input credit(32767), because 1 + 32767 > MAXVALUE. Removing getvalue()

from the devised test path allowed Gast to detect the error using the devised
test path. Since many test paths are rejected by Gast because they contain
inopportune input events, it becomes unlikely3 that this specific test path would
be one of the 100,000 generated test paths. We changed the generation of pin
numbers to include the correct pin more often and added MAXVALUE and 32767
to the generated numbers, which also enabled Gast to find the error, without
further guidance.

Although similar to mutant 5, Gast was not able to find the error in mutant
4. This seems to be caused by the sparseness of longer test paths within the
given 100,000 limit. When we guided Gast towards the state were the error
should show up, it did detect a difference between the model and the mutant.
The similar error in mutant 5 was detected because the reset() transition is
taken before executing every test path. Guiding Gast by adding the initial
path setValue(0), authenticate(wrong pin), authenticate(wrong pin),

authenticate(wrong pin), authenticate(wrong pin), authenticate(pin),

credit(1) to all generated test paths did help.
When Gast would more often generate longer test paths, the probability of

detecting the errors in mutants 2 and 4 would increase. But this would nullify
a nice property of Gast: it always yields a short path that leads to the error.
The latter feature did help a lot when investigating the differences between the
model and the applet during development. Another option is to let Gast run
longer and do more tests. We did not have the opportunity to run tests for days
at a time, and, unfortunately, we do not have a good estimate of the expected
time needed by Gast to find the errors.

3 Note that numeric values and pin numbers are randomly chosen and change from
one test run to the other.

15

Nonetheless, Gast was able to find counter examples for 4 out of 5 mutants
in a very short time. It found errors in all of the mutants after some mutant
specific guidance was given for mutant 4.

7 Related Work

In [dBM00] the authors use UML specifications, which are translated into La-
beled Transition Systems to serve as input for the TGV tool [JJ02]. Instead of
an on-the-fly execution, TGV needs an additional test purpose to generate test
cases. This generation process is also named on-the-fly, but does not mean an
on-the-fly execution of test cases like in our case. The authors created a tool to
automate the generation of test purposes based on common testing strategies.
The generated test cases are finally translated into Java code which communi-
cates with the applet and executes the test. The main difference to our approach
is that we execute tests on-the-fly without the need for additional test purposes.
This makes testing a lot easier and allows for a continuously running test exe-
cution which explores the (usually infinite) state space of the system under test
(SUT). Still it is possible to guide the test case generation, as seen in the previ-
ous section. Another issue is that TGV does not treat data symbolically, which
can easily lead to a state space explosion when dealing with large data domains.
Because we generate test cases on-the-fly based on the (symbolic) EFSM, this
problem does not occur.

To add a symbolic treatment of data, the authors of [CJRZ01] use Input/Out-
put Symbolic Transition Systems and the corresponding theory described in
[RBJ00]. The basic approach is similar to TGV, hence also here test purposes
are needed. The authors have not yet implemented a tool to automate their
generation, but suggest a coverage based approach. The test automation is done
via a translation to C++ code which is linked with the implementation. This
restricts the SUT to be a C++ class with a compatible interface. Therefore
testing real cards is not straightforward.

In [PPS+03] the tool AutoFocus [HSSS96] is used to test smart cards. It
models systems as a collection of communicating components. Instead of building
on a formal conformance relation like TGV does, common testing strategies
are used as a base for test case generation. They can basically be divided into
functional, structural and statistical test case specifications. After the test cases
are generated they are executed on a real card.

For a general introduction into these formal test tools, see [BFS04].
Rather than testing properties of the SUT, its implementation (i.e., the Java

Card applet) can also be formally verified. Testing and verification are comple-
mentary techniques to check the correctness of systems, as explained in Sect. 1.
A common technique used for verifying Java Card applets is to prove their cor-
rectness with respect to a specification in the Java Modeling Language (JML).
State-based specifications similar to the one in Fig. 1 can uniformly be trans-
lated to JML specifications as shown in [HOP03]. The resulting annotated Java
Card applet can then be verified using one of the many JML tools [BCC+03],

16

for instance, the ESCJava2 static analyzer [CK04]. Most Java Card applets are
small enough to even attempt a formal correctness-proof using the Loop tool, as
demonstrated in [JOW04].

8 Conclusion and Future Work

We have presented an approach to automate the testing of Java Card applets
using the test tool Gast. The test case derivation is based on a Statechart spec-
ification of the applet under test. Such a specification can directly be translated
into a corresponding Gast specification, and, in principle, there is no problem
in completely automating this translation. Tests were completely automatically
derived, executed, and analyzed. The feasibility of the approach was shown, and
discrepancies between the formal specification and its Java Card implementation
were successfully detected.

The direct translation from the Statechart model to the Gast specification,
and the on-the-fly execution of the test cases enable the developer to already
start with automatic testing of the applet in the early stages of development. The
co-development of the formal model and the implementation, and the facility
to do automatic tests, has shown to be very useful. Both the code and the
specification have evolved simultaneously, vastly improving the quality of the
applet, and leading to a complete and reliable specification. Such a specification
delivers further insight on how to specify similar cases, and can henceforth serve
as a pattern for these.

The tested mutants, representing certain fault models of typical programming
errors, have increased our confidence in the error detecting power of the Gast

algorithm. Nevertheless, we are planning to also use other test tools, e.g., the
ioco-based tool TorX [Tre96,TB03], in order to compare, and to obtain insight
in each tools’ weak and strong points.

Another future goal is to extend the case study in different aspects, such as
considering more complex applets, testing applets on real cards, and testing ad-
vanced aspects like the integration, interference, and feature interaction between
different loaded applets on one card.

Finally, it will be interesting to compare the testing approach with the formal
verification approach, e.g., using JML, to see how far we can get in unifying ver-
ification and testing techniques into one common framework, and to investigate
the precise shape of their complementarity.

References

[BCC+03] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M.
Leino, and E. Poll. An overview of JML tools and applications. In Th. Arts
and W. Fokkink, editors, Eighth International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 03), volume 80 of Electronic Notes in
Theoretical Computer Science (ENTCS), pages 73–89. Elsevier, June 2003.

17

[BFS04] Axel Belinfante, Lars Frantzen, and Christian Schallhart. Model-based Test-
ing of Reactive Systems - A Seminar Volume, chapter Tools for Test Case
Generation. LNCS. Springer Verlag, 2004. To appear.

[BGN+04] Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte,
Nikolai Tillman, and Margus Veanes. Towards a tool environment for model-
based testing with AsmL. In A. Petrenko and A. Ulrich, editors, FATES
2003 – Formal Approaches to Software Testing, volume 2931 of Lecture Notes
in Computer Science, pages 252–266. Springer-Verlag, 2004.

[Che00] Z. Chen. Java Card technology for smart cards: architecture and program-
mer’s guide. Addison-Wesley, June 2000.

[CJRZ01] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Automated test and oracle
generation for smart-card applications. In Proceedings of the International
Conference on Research in Smart Cards, volume 2140 of LNCS, pages 58–70,
Cannes, France, September 2001.

[CK04] David Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2. Submitted for publi-
cation, 2004.

[dBM00] L. du Bousquet and H. Martin. Automatic test generation for Java-Card
applets. In 4th Workshop on Tools for System Design and Verification, July
2000.

[Gau95] M.-C. Gaudel. Testing can be formal, too. In P.D. Mosses, M. Nielsen, and
M.I. Schwartzbach, editors, TAPSOFT’95: Theory and Practice of Software
Development, volume 915 of Lecture Notes in Computer Science, pages 82–
96. Springer-Verlag, 1995.

[HOP03] Engelbert Hubbers, Martijn Oostdijk, and Erik Poll. From finite state ma-
chines to provably correct java card applets. In Dimitris Gritzalis, Sabrina
De Capitani di Vimercati, Pierangela Samarati, and Sokratis K. Katsikas,
editors, Proceedings of the 18th IFIP Information Security Conference, pages
465–470. Kluwer Academic Publishers, 2003.

[HSSS96] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.
AutoFocus - A Tool for Distributed Systems Specification. In Proceedings
FTRTFT’96 - Formal Techniques in Real-Time and Fault-Tolerant Systems,
number LNCS 1135, pages 467 – 470. Springer Verlag, 1996.

[ISO97] ISO/IEC 7816-4, Information technology Identification cards Integrated
circuit(s) cards with contacts Part 4: Interindustry commands for inter-
change. International Organization for Standardization (ISO), Geneva, CH,
1995/1997.

[JC] Java Card Technology. http://java.sun.com/products/javacard.
[JJ02] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms. In

The Sixth World Conference on Integrated Design and Process Technology
(IDPT’02), Pasadena, California, USA, June 2002. Society for Design and
Process Science.

[JOW04] Bart Jacobs, Martijn Oostdijk, and Martijn Warnier. Source code verifica-
tion of a secure payment applet. JLAP, 58:107–120, 2004.

[KATP03] Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plas-
meijer. Gast: Generic automated software testing. In Proceedings
14th International Workshop on the Implementation of Functional Lan-
guages, IFL 2002, Selected Papers, Madrid, Spain, September 16-18,
2002, Springer Verlag, LNCS 2670, pages 84–100, 2003. see also
http://www.cs.kun.nl/~pieter/gentest/gentest.html.

18

[KP04] Pieter Koopman and Rinus Plasmeijer. Testing reactive systems with
gast. In Proceedings Fourth symposium on Trends in Functional Pro-
gramming, Edinburgh, Scotland, September 11-12, 2003., 2004. This
is an improved version of technical report NIII-R0403, available from
http://www.niii.kun.nl/research/reports/.

[LY96] David Lee and Mihalis Yannakakis. Principles and methods of testing finite
state machines – a survey. Proc. IEEE, 84(8):1090–1126, 1996.

[PPS+03] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and
K. Scholl. Model-based test case generation for smart cards. In In Proceed-
ings of the 8th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 03), 2003.

[PvE] Rinus Plasmeijer and Marko van Eekelen. The Concurrent Clean Language
Report, version 2.0. http://www.cs.kun.nl/~clean.

[RBJ00] V. Rusu, L. du Bousquet, and T. Jéron. An Approach to Symbolic Test Gen-
eration. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated
Formal Methods – IFM 2000, volume 1945 of Lecture Notes in Computer
Science, pages 338–357. Springer-Verlag, 2000.

[TB03] J. Tretmans and E. Brinksma. TorX : Automated Model Based Testing.
In A. Hartman and K. Dussa-Zieger, editors, First European Conference
on Model-Driven Software Engineering. Imbuss, Möhrendorf, Germany, De-
cember 11-12 2003. 13 pages.

[Tre96] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

[Tre99] J. Tretmans. Testing Concurrent Systems: A Formal Approach. In J.C.M.
Baeten and S. Mauw, editors, CONCUR’99 – 10th Int. Conference on Con-
currency Theory, volume 1664 of Lecture Notes in Computer Science, pages
46–65. Springer-Verlag, 1999.

[UML] UML resource page. http://www.uml.org/.

19

